Patents by Inventor Steven Paul White
Steven Paul White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12140563Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: GrantFiled: February 26, 2018Date of Patent: November 12, 2024Assignee: Oxford Nanopore Technologies PLCInventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Publication number: 20240175845Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: ApplicationFiled: December 20, 2023Publication date: May 30, 2024Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Patent number: 11898984Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: GrantFiled: November 22, 2019Date of Patent: February 13, 2024Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Patent number: 10962523Abstract: Arrangements are disclosed for measuring small electrical currents with high sensitivity, for example in the context of sensing molecular entities, for example via interactions between the molecular entities and a membrane protein inserted in an amphiphilic membrane. In one arrangement there is provided a current sensing circuit (52) configured to integrate the current output by a sensor element (56) during each of a plurality of sensing frames (62). In each sensing frame (62) first and second analogue samples of the integral are taken during first and second time windows (71,72). A readout circuit (54) processes the first and second analogue samples to output a digital output signal representing the current output by the sensor element (56). The processing comprises analogue to digital conversion processing and output processing. The output processing is performed exclusively during periods outside of the first and second time windows.Type: GrantFiled: May 9, 2016Date of Patent: March 30, 2021Assignee: Oxford Nanopore Technologies Ltd.Inventors: David A. Fish, Steven Paul White
-
Publication number: 20200080966Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: ApplicationFiled: November 22, 2019Publication date: March 12, 2020Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Patent number: 10416117Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: GrantFiled: February 16, 2017Date of Patent: September 17, 2019Assignee: Oxford Nanopore Technologies Ltd.Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Publication number: 20190242913Abstract: A sensor system (1) for measuring an electrical signal across a lipid bilayer is formed by a cell (2) and an electrical reader unit (3) which are connectable together. The cell (2) is capable of supporting a lipid bilayer across an aperture (11) in a membrane (10) and has a construction which is cheap to manufacture. The reader unit (3) is a portable device which monitors an electrical signal generated in the connected cell (2) to allow analysis of that electrical signal. The sensor system (1) is intended for use outside of a laboratory setting.Type: ApplicationFiled: January 4, 2019Publication date: August 8, 2019Applicant: Oxford Nanopore Technologies Ltd.Inventors: Gurdial Singh Sanghera, Steven Paul White, Terence Alan Reid
-
Publication number: 20190187094Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: ApplicationFiled: March 6, 2019Publication date: June 20, 2019Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Patent number: 10215768Abstract: A sensor system (1) for measuring an electrical signal across a lipid bilayer is formed by a cell (2) and an electrical reader unit (3) which are connectable together. The cell (2) is capable of supporting a lipid bilayer across an aperture (11) in a membrane (10) and has a construction which is cheap to manufacture. The reader unit (3) is a portable device which monitors an electrical signal generated in the connected cell (2) to allow analysis of that electrical signal. The sensor system (1) is intended for use outside of a laboratory setting.Type: GrantFiled: June 4, 2015Date of Patent: February 26, 2019Assignee: Oxford Nanopore Technologies Ltd.Inventors: Gurdial Singh Sanghera, Steven Paul White, Terrence Alan Reid
-
Publication number: 20180321188Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: ApplicationFiled: February 26, 2018Publication date: November 8, 2018Applicant: Oxford Nanopore Technologies Ltd.Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Publication number: 20180143178Abstract: Arrangements are disclosed for measuring small electrical currents with high sensitivity, for example in the context of sensing molecular entities, for example via interactions between the molecular entities and a membrane protein inserted in an amphiphilic membrane. In one arrangement there is provided a current sensing circuit (52) configured to integrate the current output by a sensor element (56) during each of a plurality of sensing frames (62). In each sensing frame (62) first and second analogue samples of the integral are taken during first and second time windows (71,72). A readout circuit (54) processes the first and second analogue samples to output a digital output signal representing the current output by the sensor element (56). The processing comprises analogue to digital conversion processing and output processing. The output processing is performed exclusively during periods outside of the first and second time windows.Type: ApplicationFiled: May 9, 2016Publication date: May 24, 2018Applicant: Oxford Nanopore Technologies Ltd.Inventors: David A. Fish, Steven Paul White
-
Patent number: 9927398Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: GrantFiled: June 30, 2015Date of Patent: March 27, 2018Assignee: Oxford Nanopore Technologies Ltd.Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Publication number: 20170363577Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: ApplicationFiled: February 16, 2017Publication date: December 21, 2017Applicant: Oxford Nanopore Technologies Ltd.Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Publication number: 20150300986Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: ApplicationFiled: June 30, 2015Publication date: October 22, 2015Inventors: Stuart William REID, Terence Alan REID, James Anthony CLARKE, Steven Paul WHITE, Gurdial Singh SANGHERA
-
Publication number: 20150268256Abstract: A sensor system (1) for measuring an electrical signal across a lipid bilayer is formed by a cell (2) and an electrical reader unit (3) which are connectable together. The cell (2) is capable of supporting a lipid bilayer across an aperture (11) in a membrane (10) and has a construction which is cheap to manufacture. The reader unit (3) is a portable device which monitors an electrical signal generated in the connected cell (2) to allow analysis of that electrical signal. The sensor system (1) is intended for use outside of a laboratory setting.Type: ApplicationFiled: June 4, 2015Publication date: September 24, 2015Inventors: Gurdial Singh Sanghera, Steven Paul White, Terrence Alan Reid
-
Publication number: 20140329693Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: ApplicationFiled: June 11, 2014Publication date: November 6, 2014Inventors: Stuart William REID, Terence Alan REID, James Anthony CLARKE, Steven Paul WHITE, Gurdial Singh SANGHERA
-
Publication number: 20110121840Abstract: A sensor system (1) for measuring an electrical signal across a lipid bilayer is formed by a cell (2) and an electrical reader unit (3) which are connectable together. The cell (2) is capable of supporting a lipid bilayer across an aperture (11) in a membrane (10) and has a construction which is cheap to manufacture. The reader unit (3) is a portable device which monitors an electrical signal generated in the connected cell (2) to allow analysis of that electrical signal. The sensor system (1) is intended for use outside of a laboratory setting.Type: ApplicationFiled: February 18, 2008Publication date: May 26, 2011Inventors: Gurdial Singh Sanghera, Steven Paul White, Terence Alan Reid
-
Publication number: 20110120871Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: ApplicationFiled: December 15, 2008Publication date: May 26, 2011Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
-
Publication number: 20100196203Abstract: A method for forming a lipid bilayer across an aperture, comprises: (a) providing a cell having a chamber adjacent to a septum comprising a membrane having an aperture capable of supporting a lipid bilayer; (b) depositing one or more lipids on an internal surface of the chamber; (c) introducing an aqueous solution into the chamber to cover the aperture and the internal surface and to form an interface between the solution and lipids; and (d) moving the interface past the aperture at least once to form a lipid bilayer across the aperture.Type: ApplicationFiled: February 18, 2008Publication date: August 5, 2010Inventors: Gurdial Singh Sanghera, Steven Paul White, Terence Alan Reid
-
Publication number: 20090167288Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.Type: ApplicationFiled: December 19, 2008Publication date: July 2, 2009Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera