Patents by Inventor Steven R. Bailey

Steven R. Bailey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9259334
    Abstract: A device for treating a damaged tissue includes an expandable scaffold positionable in a portion of a luminal tissue structure of a mammal; and maintained via stent technology, wherein the scaffold is comprised of electrospun fibers composed of a biodegradable compound. The scaffold serves as a temporary template that allows the tissue to be rebuilt.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: February 16, 2016
    Assignee: Board of Regents of The University of Texas System
    Inventors: J. Jordan Massey Kaufmann, C. Mauli Agrawal, Steven R. Bailey
  • Publication number: 20150366667
    Abstract: This invention relates to prosthetic cardiac and venous valves and a single catheter device and minimally invasive techniques for percutaneous and transluminal valvuloplasty and prosthetic valve implantation.
    Type: Application
    Filed: March 23, 2015
    Publication date: December 24, 2015
    Inventors: Steven R. Bailey, Christopher T. Boyle
  • Publication number: 20150342761
    Abstract: The drug eluting device consists of an implantable structural element for in vivo controlled delivery of bioactive active agents to a situs in a body. The implantable structural element may be configured as an implantable prosthesis, such as an endoluminal stent, cardiac valve, osteal implant or the like, which serves a dual function of being prosthetic and a carrier for a bioactive agent. Control over elution of the bioactive agents occurs through a plurality of cantilever-like cover members which prevent drug elution until an endogenous or exogenous stimulus causes the cover members to open and permit drug elution.
    Type: Application
    Filed: August 13, 2015
    Publication date: December 3, 2015
    Inventors: Denes MARTON, Steven R. BAILEY, Christopher E. BANAS, Christoper T. BOYLE
  • Patent number: 9107605
    Abstract: The present invention consists of an implantable structural element for in vivo controlled delivery of bioactive active agents to a situs in a body. The implantable structural element may be configured as an implantable prosthesis, such as an endoluminal stent, cardiac valve, osteal implant or the like, which serves a dual function of being prosthetic and a carrier for a bioactive agent. Control over elution of the bioactive agents occurs through a plurality of cantilever-like cover members which prevent drug elution until an endogenous or exogenous stimulus causes the cover members to open and permit drug elution.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: August 18, 2015
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Christopher T. Boyle, Steven R. Bailey, Denes Marton, Christopher E. Banas
  • Patent number: 8992597
    Abstract: This invention relates to prosthetic cardiac and venous valves and a single catheter device and minimally invasive techniques for percutaneous and transluminal valvuloplasty and prosthetic valve implantation.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 31, 2015
    Assignee: ABPS Venture One, Ltd.
    Inventors: Christopher T. Boyle, Steven R. Bailey
  • Publication number: 20140283941
    Abstract: A seamless self-insulated foam duct made from a single continuous homogenous member of polymeric foam and an apparatus and methods for making such ducts. The homogenous foam member may be transformed to include a plurality of layers such as a densified inner foam layer surrounded by an outer insulating foam layer. The outer insulating foam layer may be partially densified to form a densified outer foam layer. In one embodiment the foam member may be wrapped and bonded to an external layer coating that provides additional protection to the duct. In one embodiment the foam duct is modified to have nestable ends whereby one end of a first foam duct is sized and shape to fit within and snugly engage a compatible end of a second foam duct. The duct may be manufactured by an apparatus capable of implementing a series of cutting and densifying steps that result in custom-sized foam ducts having one or more densified foam layers.
    Type: Application
    Filed: March 25, 2013
    Publication date: September 25, 2014
    Applicant: Evonik Foams, Inc.
    Inventors: Steven R. Bailey, Sharon White Ferguson
  • Patent number: 8641754
    Abstract: An endoluminal stent composed of a plurality of first structural elements arrayed to form the circumference of the stent and extending along the longitudinal axis of the stent, and a plurality of second structural elements that interconnect adjacent pairs of first structural elements. The plurality of first structural elements have either a linear shape or a generally sinusoidal configuration with either a regular or irregular periodicity or regions of regular and regions of irregular periodicity between the peaks and troughs of the pattern, with the peaks and troughs projecting from the first structural elements in the circumferential axis. The plurality of second structural elements are generally linear or sinusoidal-shaped members which interconnect an apex of a peak of one of the plurality of first structural elements with an apex of a valley of a second and adjacent one of the plurality of first structural elements.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: February 4, 2014
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd. a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Christopher T. Boyle, Steven R. Bailey, Julio C. Palmaz, Christopher E. Banas
  • Publication number: 20130287931
    Abstract: The method of making devices is disclosed herein. More particularly, a method of manufacturing a device, comprises: vacuum depositing a device-forming metal onto an unpatterned, exterior surface of a generally cylindrical substrate to form a generally tubular, unpatterned crystalline metal film under at least one vacuum deposition process condition selected from at least one of chamber pressure, deposition pressure, and partial pressure of a process gas, said at least one process condition optimized to substantially eliminate formation of chemical and intra- and intergranular precipitates in the bulk material; and removing the deposited generally tubular, unpatterned crystalline metal film from the generally cylindrical substrate.
    Type: Application
    Filed: March 20, 2013
    Publication date: October 31, 2013
    Inventors: Julio C. PALMAZ, Steven R. BAILEY, Christopher T. BOYLE, Christopher E. BANAS
  • Publication number: 20130218253
    Abstract: A device for treating a damaged tissue includes an expandable scaffold positionable in a portion of a luminal tissue structure of a mammal; and maintained via stent technology, wherein the scaffold is comprised of electrospun fibers composed of a biodegradable compound. The scaffold serves as a temporary template that allows the tissue to be rebuilt.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 22, 2013
    Inventors: J. Jordan Massey Kaufmann, C. Mauli Agrawal, Steven R. Bailey
  • Publication number: 20130166018
    Abstract: The implantable structural element for in vivo controlled delivery of bioactive active agents to a situs in a body. The implantable structural element may be configured as an implantable prosthesis, such as an endoluminal stent, cardiac valve, osteal implant or the like, which serves a dual function of being prosthetic and a carrier for a bioactive agent. Control over elution of the bioactive agents occurs through a plurality of cantilever-like cover members which prevent drug elution until an endogenous or exogenous stimulus causes the cover members to open and permit drug elution.
    Type: Application
    Filed: August 20, 2012
    Publication date: June 27, 2013
    Applicant: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Christopher T. Boyle, Steven R. Bailey, Denes Marton, Christopher E. Banas
  • Publication number: 20130150947
    Abstract: A device for treating a cardiovascular condition includes an expandable scaffold positionable in a portion of a vasculature of a mammal; and maintained via stent technology, wherein the scaffold is comprised of electrospun fibers composed of a biodegradable compound. The biodegradable compound serves as a temporary template that allows the cardiovascular tissue to be rebuilt about the scaffold.
    Type: Application
    Filed: March 11, 2011
    Publication date: June 13, 2013
    Inventors: J. Jordan Massey Kaufmann, C. Mauli Agrawal, Steven R. Bailey
  • Patent number: 8460333
    Abstract: A metal balloon catheter having a main tubular body, a metal balloon proximate a distal end of the main tubular body, a central annulus extending along an entire longitudinal aspect of the catheter for accommodating a guidewire therethrough and an inflation annulus adjacent the central annulus which extends along the longitudinal axis of the main tubular body and terminates in fluid flow communication with an inflation chamber of the metal balloon. The metal balloon catheter may be either unitary integral metal catheter in which the main tubular body and the balloon are fabricated of metal, or it may consist of a polymeric main tubular body and a metal balloon.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: June 11, 2013
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd.
    Inventors: Christopher T. Boyle, Steven R. Bailey, Christopher E. Banas, Julio C. Palmaz
  • Publication number: 20130041251
    Abstract: Implantable in vivo sensors used to monitor physical, chemical or electrical parameters within a body. The in vivo sensors are integral with an implantable medical device and are responsive to externally or internally applied energy. Upon application of energy, the sensors undergo a phase change in at least part of the material of the device which is then detected external to the body by conventional techniques such as radiography, ultrasound imaging, magnetic resonance imaging, radio frequency imaging or the like. The in vivo sensors of the present invention may be employed to provide volumetric measurements, flow rate measurements, pressure measurements, electrical measurements, biochemical measurements, temperature, measurements, or measure the degree and type of deposits within the lumen of an endoluminal implant, such as a stent or other type of endoluminal conduit.
    Type: Application
    Filed: August 28, 2012
    Publication date: February 14, 2013
    Applicant: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Steven R. Bailey, Christopher T. Boyle, Denes Marton, Christopher E. Banas
  • Patent number: 8372139
    Abstract: Implantable in vivo sensors used to monitor physical, chemical or electrical parameters within a body. The in vivo sensors are integral with an implantable medical device and are responsive to externally or internally applied energy. Upon application of energy, the sensors undergo a phase change in at least part of the material of the device which is then detected external to the body by conventional techniques such as radiography, ultrasound imaging, magnetic resonance imaging, radio frequency imaging or the like. The in vivo sensors of the present invention may be employed to provide volumetric measurements, flow rate measurements, pressure measurements, electrical measurements, biochemical measurements, temperature, measurements, or measure the degree and type of deposits within the lumen of an endoluminal implant, such as a stent or other type of endoluminal conduit.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: February 12, 2013
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd.
    Inventors: Steven R. Bailey, Christopher T. Boyle, Denes Marton, Christopher E. Banas
  • Publication number: 20130018449
    Abstract: This invention relates to prosthetic cardiac and venous valves and a single catheter device and minimally invasive techniques for percutaneous and transluminal valvuloplasty and prosthetic valve implantation.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 17, 2013
    Applicant: ABPS Venture One, Ltd.
    Inventors: Steven R. Bailey, Christopher T. Boyle
  • Publication number: 20120310158
    Abstract: A metal balloon catheter having a main tubular body, a metal balloon proximate a distal end of the main tubular body, a central annulus extending along an entire longitudinal aspect of the catheter for accommodating a guidewire therethrough and an inflation annulus adjacent the central annulus which extends along the longitudinal axis of the main tubular body and terminates in fluid flow communication with an inflation chamber of the metal balloon. The metal balloon catheter may be either unitary integral metal catheter in which the main tubular body and the balloon are fabricated of metal, or it may consist of a polymeric main tubular body and a metal balloon.
    Type: Application
    Filed: August 16, 2012
    Publication date: December 6, 2012
    Applicant: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Christopher T. Boyle, Steven R. Bailey, Christopher E. Banas, Julio C. Palmaz
  • Patent number: 8221493
    Abstract: This invention relates to prosthetic cardiac and venous valves and a single catheter device and minimally invasive techniques for percutaneous and transluminal valvuloplasty and prosthetic valve implantation.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: July 17, 2012
    Assignee: ABPS Venture One, Ltd.
    Inventors: Christopher T. Boyle, Steven R. Bailey
  • Publication number: 20110275947
    Abstract: Aspects according to the present invention provide a method and implant suitable for implantation inside a human body that includes a power consuming means responsive to a physiological requirement of the human body, a power source and a power storage device. The power source comprises a piezoelectric assembly that is configured to generate an electrical current when flexed by the tissue of the body and communicate the generated current to the power storage device, which is electrically coupled to the power source and to the power consuming means.
    Type: Application
    Filed: March 7, 2011
    Publication date: November 10, 2011
    Applicant: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, Shaochen Chen, Li-Hsin Han, Carlos A. Aguilar, Arturo A. Ayon, C. Mauli A Grawal, David M. Lighthart, Devang N. Patel, Steven R. Bailey, Brian A. Korgel, Doh C. Lee, Tushar Sharma, Christopher J. Ellison, Xiaojing Zhang
  • Patent number: 7803393
    Abstract: An implant for use in biological/biomedical applications may be prepared by subjecting a substrate to a gas-plasma treatment. The substrate may be a biocompatible material, including metals, ceramics, and polymers. More specifically, the substrate may be a bioresorbable polymer. The gas-plasma treatment may include subjecting the substrate to a plasma formed by a reactive gas. The gas-plasma treatment may be performed for a chosen duration at a radio frequency within a temperature range, a pressure range, and a supplied energy range. The substrate may be exposed to living cells, such that some of the living cells become coupled to the substrate. Gas-plasma treatment parameters may be chosen such that the living cells coupled to the treated substrate produce more of a cellular product than living cells coupled to an untreated substrate.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: September 28, 2010
    Assignee: Board of Regents, The University of Texas System
    Inventors: C. Mauli Agrawal, Steven R. Bailey, Jodie L. Polan
  • Patent number: 7799069
    Abstract: This invention relates to prosthetic cardiac and venous valves and a single catheter device and minimally invasive techniques for percutaneous and transluminal valvuloplasty and prosthetic valve implantation.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: September 21, 2010
    Assignee: ABPS Venture One, Ltd.
    Inventors: Steven R. Bailey, Christopher T. Boyle