Patents by Inventor Steven R. MICKELSEN

Steven R. MICKELSEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250099175
    Abstract: Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage pulses to drive irreversible electroporation for minimally invasive transurethral prostate ablation. In one embodiment, a switch unit is used to modulate and apply voltage pulses from a cardiac defibrillator, while in another, the system controller can be configured to apply voltages to an independently selected multiplicity or subsets of electrodes. Devices are disclosed for more effective DC voltage application including the infusion of cooled fluid to elevate the irreversible electroporation threshold of urethral wall tissue and to selectively ablate regions of prostate tissue alone.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventor: Steven R. Mickelsen
  • Patent number: 12161397
    Abstract: Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage pulses to drive irreversible electroporation for minimally invasive transurethral prostate ablation. In one embodiment, a switch unit is used to modulate and apply voltage pulses from a cardiac defibrillator, while in another, the system controller can be configured to apply voltages to an independently selected multiplicity or subsets of electrodes. Devices are disclosed for more effective DC voltage application including the infusion of cooled fluid to elevate the irreversible electroporation threshold of urethral wall tissue and to selectively ablate regions of prostate tissue alone.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: December 10, 2024
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Steven R. Mickelsen
  • Publication number: 20240315769
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 26, 2024
    Inventor: Steven R. Mickelsen
  • Publication number: 20240315770
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 26, 2024
    Inventor: Steven R. Mickelsen
  • Publication number: 20240307114
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Inventor: Steven R. Mickelsen
  • Publication number: 20240307116
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Inventor: Steven R. Mickelsen
  • Publication number: 20240307117
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Inventor: Steven R. Mickelsen
  • Publication number: 20240307115
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Inventor: Steven R. Mickelsen
  • Publication number: 20240299089
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Application
    Filed: May 14, 2024
    Publication date: September 12, 2024
    Inventor: Steven R. Mickelsen
  • Publication number: 20240299088
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Application
    Filed: May 14, 2024
    Publication date: September 12, 2024
    Inventor: Steven R. Mickelsen
  • Publication number: 20230301708
    Abstract: Systems, tools and methods are disclosed for the selective and rapid application of DC voltage to drive irreversible electroporation, with the system controller capable of being configured to apply voltages to independently selected subsets of electrodes and capable of generating at least one control signal to maintain the temperature near an electrode head within a desired range of values. Electrode clamp devices are also disclosed for generating electric fields to drive irreversible electroporation while modulating temperature to elevate the irreversible electroporation threshold utilizing a variety of means such as cooling fluid or solid state thermoelectric heat pumps.
    Type: Application
    Filed: April 10, 2023
    Publication date: September 28, 2023
    Inventors: Steven R. MICKELSEN, Raju VISWANATHAN, Allan ZINGELER
  • Patent number: 11622803
    Abstract: Systems, tools and methods are disclosed for the selective and rapid application of DC voltage to drive irreversible electroporation, with the system controller capable of being configured to apply voltages to independently selected subsets of electrodes and capable of generating at least one control signal to maintain the temperature near an electrode head within a desired range of values. Electrode clamp devices are also disclosed for generating electric fields to drive irreversible electroporation while modulating temperature to elevate the irreversible electroporation threshold utilizing a variety of means such as cooling fluid or solid state thermoelectric heat pumps.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: April 11, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Steven R. Mickelsen, Raju Viswanathan, Allan Zingeler
  • Publication number: 20220133405
    Abstract: Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage pulses to drive irreversible electroporation for minimally invasive transurethral prostate ablation. In one embodiment, a switch unit is used to modulate and apply voltage pulses from a cardiac defibrillator, while in another, the system controller can be configured to apply voltages to an independently selected multiplicity or subsets of electrodes. Devices are disclosed for more effective DC voltage application including the infusion of cooled fluid to elevate the irreversible electroporation threshold of urethral wall tissue and to selectively ablate regions of prostate tissue alone.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Inventor: Steven R. Mickelsen
  • Patent number: 11259869
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: March 1, 2022
    Assignee: Farapulse, Inc.
    Inventor: Steven R. Mickelsen
  • Patent number: 11241282
    Abstract: Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage pulses to drive irreversible electroporation for minimally invasive transurethral prostate ablation. In one embodiment, a switch unit is used to modulate and apply voltage pulses from a cardiac defibrillator, while in another, the system controller can be configured to apply voltages to an independently selected multiplicity or subsets of electrodes. Devices are disclosed for more effective DC voltage application including the infusion of cooled fluid to elevate the irreversible electroporation threshold of urethral wall tissue and to selectively ablate regions of prostate tissue alone.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: February 8, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Steven R. Mickelsen
  • Publication number: 20220000548
    Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
    Type: Application
    Filed: June 16, 2021
    Publication date: January 6, 2022
    Applicant: Farapulse, Inc.
    Inventor: Steven R. MICKELSEN
  • Publication number: 20200397498
    Abstract: Systems, tools and methods are disclosed for the selective and rapid application of DC voltage to drive irreversible electroporation, with the system controller capable of being configured to apply voltages to independently selected subsets of electrodes and capable of generating at least one control signal to maintain the temperature near an electrode head within a desired range of values. Electrode clamp devices are also disclosed for generating electric fields to drive irreversible electroporation while modulating temperature to elevate the irreversible electroporation threshold utilizing a variety of means such as cooling fluid or solid state thermoelectric heat pumps.
    Type: Application
    Filed: April 2, 2020
    Publication date: December 24, 2020
    Applicant: Farapulse, Inc.
    Inventors: Steven R. MICKELSEN, Raju VISWANATHAN, Allan ZINGELER
  • Patent number: 10624693
    Abstract: Systems, tools and methods are disclosed for the selective and rapid application of DC voltage to drive irreversible electroporation, with the system controller capable of being configured to apply voltages to independently selected subsets of electrodes and capable of generating at least one control signal to maintain the temperature near an electrode head within a desired range of values. Electrode clamp devices are also disclosed for generating electric fields to drive irreversible electroporation while modulating temperature to elevate the irreversible electroporation threshold utilizing a variety of means such as cooling fluid or solid state thermoelectric heat pumps.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: April 21, 2020
    Assignee: Farapulse, Inc.
    Inventors: Steven R. Mickelsen, Raju Viswanathan, Allan Zingeler
  • Publication number: 20200038104
    Abstract: Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage pulses to drive irreversible electroporation for minimally invasive transurethral prostate ablation. In one embodiment, a switch unit is used to modulate and apply voltage pulses from a cardiac defibrillator, while in another, the system controller can be configured to apply voltages to an independently selected multiplicity or subsets of electrodes. Devices are disclosed for more effective DC voltage application including the infusion of cooled fluid to elevate the irreversible electroporation threshold of urethral wall tissue and to selectively ablate regions of prostate tissue alone.
    Type: Application
    Filed: October 7, 2019
    Publication date: February 6, 2020
    Applicant: Farapulse, Inc.
    Inventor: Steven R. MICKELSEN
  • Patent number: 10433906
    Abstract: Catheter systems, tools and methods are disclosed for the selective and rapid application of DC voltage pulses to drive irreversible electroporation for minimally invasive transurethral prostate ablation. In one embodiment, a switch unit is used to modulate and apply voltage pulses from a cardiac defibrillator, while in another, the system controller can be configured to apply voltages to an independently selected multiplicity or subsets of electrodes. Devices are disclosed for more effective DC voltage application including the infusion of cooled fluid to elevate the irreversible electroporation threshold of urethral wall tissue and to selectively ablate regions of prostate tissue alone.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 8, 2019
    Assignee: Farapulse, Inc.
    Inventor: Steven R. Mickelsen