Patents by Inventor Steven R. Ragsdale

Steven R. Ragsdale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9863049
    Abstract: A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: January 9, 2018
    Assignee: BROADLEY TECHNOLOGIES CORPORATION
    Inventors: Scott T. Broadley, Herbert P. Silverman, Ta-Yung Chen, Steven R. Ragsdale
  • Publication number: 20140374271
    Abstract: A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.
    Type: Application
    Filed: September 12, 2014
    Publication date: December 25, 2014
    Inventors: Scott T. Broadley, Herbert P. Silverman, Ta-Yung Chen, Steven R. Ragsdale
  • Patent number: 8911604
    Abstract: A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 16, 2014
    Assignee: Broadley Technologies Corporation
    Inventors: Scott T. Broadley, Herbert P. Silverman, Ta-Yung Chen, Steven R. Ragsdale
  • Publication number: 20120097552
    Abstract: A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.
    Type: Application
    Filed: October 28, 2011
    Publication date: April 26, 2012
    Inventors: Scott T. Broadley, Herbert R. Silverman, Ta-Yung Chen, Steven R. Ragsdale
  • Patent number: 8048278
    Abstract: A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 1, 2011
    Assignee: Broadley Technologies Corporation
    Inventors: Scott T. Broadley, Herbert P. Silverman, Ta-Yung Chen, Steven R. Ragsdale
  • Patent number: 7943026
    Abstract: A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: May 17, 2011
    Assignee: Broadley Technologies Corporation
    Inventors: Scott T. Broadley, Herbert P. Silverman, Ta-Yung Chen, Steven R. Ragsdale
  • Patent number: 7459066
    Abstract: A flowing junction reference electrode comprises a microfluidic liquid junction member situated between a pressurized reference electrolyte solution and a sample solution. The liquid junction member has an array of nanochannels spanning the member and physically connecting the electrolyte and the sample. The number of nanochannels in the array can be between 10 and 108. Preferably, the nanochannels are substantially straight and parallel to one another. The nanochannels can be coated to facilitate the flow of the electrolyte solution through the junction member. The nanochannels can have widths of between 1 and 500 nanometers, and the width of any one nanochannel is substantially equal to the width of any other nanochannel. The member can be manufactured out a polymer such as polycarbonate and polyimide, and may also be made of silicon, glass, or ceramic. In one embodiment, the reference electrode includes means for pressurizing the electrolyte solution.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: December 2, 2008
    Assignee: Broadley Technologies, Corporation
    Inventors: Scott T. Broadley, Steven R. Ragsdale, Herbert P. Silverman
  • Patent number: 7344627
    Abstract: A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: March 18, 2008
    Assignee: Broadley-James Corporation
    Inventors: Scott T. Broadley, Herbert P. Silverman, Ta-Yung Chen, Steven R. Ragsdale
  • Patent number: 7025871
    Abstract: A flowing junction reference electrode exhibiting heretofore unattainable potentiometric characteristics is described, comprising a microfluidic liquid junction member that is situated between a reference electrolyte solution and a sample solution. This microfluidic liquid junction member has an array of nanochannels spanning the member and physically connecting the reference electrolyte solution and a sample solution, but while the electrolyte solution flows through the array of nanochannels and into the sample solution at a linear velocity, the sample solution does not substantially enter the array of nanochannels via the mechanisms of diffusion, migration, convection or other known mechanisms. The number of nanochannels in the array is preferably between approximately 108 and approximately 100. Also preferably, the nanochannels are substantially straight and are substantially parallel to one another; such an array of nanochannels is herein described as anisotropic.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: April 11, 2006
    Assignee: Broadley Technologies Corporation
    Inventors: Scott T. Broadley, Steven R. Ragsdale, Herbert P. Silverman
  • Patent number: 7005049
    Abstract: A flowing junction reference electrode comprises a microfluidic liquid junction member situated between a pressurized reference electrolyte solution and a sample solution. This liquid junction member has an array of nanochannels spanning the member and physically connecting the electrolyte and the sample. While the electrolyte flows through the nanochannels and into the sample, the sample does not substantially enter the nanochannels via diffusion, migration, convection or other mechanisms. The number of nanochannels in the array can be between 10 and 108. Preferably, the nanochannels are substantially straight and parallel to one another. The nanochannels can have widths of between 1 and 500 nanometers, and the width of any one nanochannel is substantially equal to the width of any other nanochannel. The member can be manufactured out a polymer such as polycarbonate and polyimide, and may also be made of silicon, glass, or ceramic.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: February 28, 2006
    Assignee: Broadley Technologies Corporation
    Inventors: Scott T. Broadley, Steven R. Ragsdale, Herbert P. Silverman
  • Publication number: 20040195098
    Abstract: A flowing junction reference electrode comprising a liquid junction member matched with a filter. The junction member and the filter are situated between a reference electrolyte solution and a sample solution. An array of nanochannels spans the junction member and provides fluid communication between the electrolyte solution and the sample solution. The filter is configured to allow a greater flux of electrolyte than that associated with the junction member. Preferably, the number of pores is greater than the number of nanochannels. The filter is preferably configured to have pores with an inner diameter that is the same or less than the inner diameter of the nanochannels. In some embodiment, the resistance of the filter is made lower relative to the resistance of the junction member by selecting suitable length, number, and inner diameter size for the pores of the filter relative to the nanochannels of the junction member.
    Type: Application
    Filed: July 2, 2003
    Publication date: October 7, 2004
    Inventors: Scott T. Broadley, Herbert P. Silverman, Steven R. Ragsdale, Ta-Yung Chen
  • Publication number: 20040011647
    Abstract: A flowing junction reference electrode comprises a microfluidic liquid junction member situated between a pressurized reference electrolyte solution and a sample solution. This liquid junction member has an array of nanochannels spanning the member and physically connecting the electrolyte and the sample. While the electrolyte flows through the nanochannels and into the sample, the sample does not substantially enter the nanochannels via diffusion, migration, convection or other mechanisms. The number of nanochannels in the array can be between 10 and 108. Preferably, the nanochannels are substantially straight and parallel to one another. The nanochannels can have widths of between 1 and 500 nanometers, and the width of any one nanochannel is substantially equal to the width of any other nanochannel. The member can be manufactured out a polymer such as polycarbonate and polyimide, and may also be made of silicon, glass, or ceramic.
    Type: Application
    Filed: July 15, 2003
    Publication date: January 22, 2004
    Inventors: Scott T. Broadley, Steven R. Ragsdale, Herbert P. Silverman
  • Publication number: 20040011670
    Abstract: A flowing junction reference electrode comprises a microfluidic liquid junction member situated between a pressurized reference electrolyte solution and a sample solution. The liquid junction member has an array of nanochannels spanning the member and physically connecting the electrolyte and the sample. The number of nanochannels in the array can be between 10 and 108. Preferably, the nanochannels are substantially straight and parallel to one another. The nanochannels can be coated to facilitate the flow of the electrolyte solution through the junction member. The nanochannels can have widths of between 1 and 500 nanometers, and the width of any one nanochannel is substantially equal to the width of any other nanochannel. The member can be manufactured out a polymer such as polycarbonate and polyimide, and may also be made of silicon, glass, or ceramic. In one embodiment, the reference electrode includes means for pressurizing the electrolyte solution.
    Type: Application
    Filed: July 15, 2003
    Publication date: January 22, 2004
    Inventors: Scott T. Broadley, Steven R. Ragsdale, Herbert P. Silverman
  • Publication number: 20030168354
    Abstract: A flowing junction reference electrode exhibiting heretofore unattainable potentiometric characteristics is described, comprising a microfluidic liquid junction member that is situated between a reference electrolyte solution and a sample solution. This microfluidic liquid junction member has an array of nanochannels spanning the member and physically connecting the reference electrolyte solution and a sample solution, but while the electrolyte solution flows through the array of nanochannels and into the sample solution at a linear velocity, the sample solution does not substantially enter the array of nanochannels via the mechanisms of diffusion, migration, convection or other known mechanisms. The number of nanochannels in the array is preferably between approximately 108 and approximately 100. Also preferably, the nanochannels are substantially straight and are substantially parallel to one another; such an array of nanochannels is herein described as anisotropic.
    Type: Application
    Filed: February 6, 2003
    Publication date: September 11, 2003
    Inventors: Scott T. Broadley, Steven R. Ragsdale, Herbert P. Silverman
  • Patent number: 6599409
    Abstract: A flowing junction reference electrode exhibiting heretofore unattainable potentiometric characteristics is described, comprising a microfluidic liquid junction member that is situated between a reference electrolyte solution and a sample solution. This microfluidic liquid junction member has an array of nanochannels spanning the member and physically connecting the reference electrolyte solution and a sample solution, but while the electrolyte solution flows through the array of nanochannels and into the sample solution at a linear velocity, the sample solution does not substantially enter the array of nanochannels via the mechanisms of diffusion, migration, convection or other known mechanisms. The number of nanochannels in the array is preferably between approximately 108 and approximately 100. Also preferably, the nanochannels are substantially straight and are substantially parallel to one another; such an array of nanochannels is herein described as anisotropic.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: July 29, 2003
    Assignee: Broadley Technologies Corporation
    Inventors: Scott T. Broadley, Steven R. Ragsdale, Herbert P. Silverman