Patents by Inventor Steven Ray Walton

Steven Ray Walton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190250128
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Application
    Filed: April 19, 2019
    Publication date: August 15, 2019
    Applicant: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Patent number: 10288585
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: May 14, 2019
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Patent number: 10247706
    Abstract: System and method for enabling ultrasonic inspection of a variable and irregular shape. The system comprises one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a shoe or jig to hold and position the array(s), data acquisition software to drive the array(s), and data analysis software to select a respective best return signal for each pixel to be displayed. This system starts with information about the general orientation of the array relative to the part and a general predicted part shape. More specific orientation of the transmitted ultrasound beams relative to the part surface is done electronically by phasing the elements in the array(s) to cover the expected (i.e., predicted) surface as well as the full range of part surface variability.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: April 2, 2019
    Assignee: The Boeing Company
    Inventors: Michael C. Hutchinson, James C. Kennedy, Barry A. Fetzer, Michael Joseph Duncan, Navpreet S. Grewal, Steven Ray Walton, Hien T. Bui
  • Publication number: 20160274066
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Application
    Filed: September 29, 2015
    Publication date: September 22, 2016
    Applicant: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Publication number: 20160258905
    Abstract: System and method for enabling ultrasonic inspection of a variable and irregular shape. The system comprises one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a shoe or jig to hold and position the array(s), data acquisition software to drive the array(s), and data analysis software to select a respective best return signal for each pixel to be displayed. This system starts with information about the general orientation of the array relative to the part and a general predicted part shape. More specific orientation of the transmitted ultrasound beams relative to the part surface is done electronically by phasing the elements in the array(s) to cover the expected (i.e., predicted) surface as well as the full range of part surface variability.
    Type: Application
    Filed: May 3, 2016
    Publication date: September 8, 2016
    Applicant: The Boeing Company
    Inventors: Michael C. Hutchinson, James C. Kennedy, Barry A. Fetzer, Michael Joseph Duncan, Navpreet S. Grewal, Steven Ray Walton, Hien T. Bui
  • Patent number: 9366655
    Abstract: System and method for enabling ultrasonic inspection of a variable and irregular shape. The system comprises one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a shoe or jig to hold and position the array(s), data acquisition software to drive the array(s), and data analysis software to select a respective best return signal for each pixel to be displayed. This system starts with information about the general orientation of the array relative to the part and a general predicted part shape. More specific orientation of the transmitted ultrasound beams relative to the part surface is done electronically by phasing the elements in the array(s) to cover the expected (i.e., predicted) surface as well as the full range of part surface variability.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: June 14, 2016
    Assignee: The Boeing Company
    Inventors: Michael C. Hutchinson, James C. Kennedy, Barry A. Fetzer, Michael Joseph Duncan, Navpreet S. Grewal, Steven Ray Walton, Hien T. Bui
  • Patent number: 9201047
    Abstract: A system and method for inspecting a joint fillet having a surface whose radius varies along the length of the joint fillet. In one embodiment, the inspection apparatus comprises: a chassis; a shoe assembly supported by the chassis and comprising an axle; a transducer array assembly translatably coupled to the shoe assembly; biasing means for urging the transducer array assembly to translate relative to the shoe assembly in a first direction; and a lever assembly pivotably coupled to the axle of the shoe assembly and in contact with the transducer array assembly over a range of angular positions of the lever assembly. The transducer array will translate in a second direction opposite to the first direction when the net force exerted by the lever assembly is greater than the biasing force exerted by the biasing means. The lever assembly is used to automatically adjust the array position to the varying fillet radius.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: December 1, 2015
    Assignee: The Boeing Company
    Inventor: Steven Ray Walton
  • Patent number: 9176099
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: November 3, 2015
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Patent number: 9010684
    Abstract: A system and method that allow inspection of hollow structures made of composite material, such as an integrally stiffened wing box of an aircraft. A wing box comprises top and bottom skins connected by a plurality of spaced spars. The system employs a plurality of scanners for inspecting different portions of each spar. The system uses dynamically controlled magnetic coupling to connect an external drive tractor to computer-controlled scanners that carry respective sensors, e.g., linear ultrasonic transducer arrays. A system operator can control the various components by means of a graphical user interface comprising multiple interaction regions that represent the individual scanner motion paths and are associated with respective motion script files.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 21, 2015
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Michael C. Hutchinson, Martin L. Freet, Ronald E. VonWahlde, Steven Ray Walton, Jeffry J. Garvey, Scott W. Lea, James J. Troy, Daniel James Wright, Hien T. Bui, Michael Joseph Duncan, Mark L. Little, William Joseph Tapia, Barry A. Fetzer, Richard C. Krotzer
  • Patent number: 8763462
    Abstract: A probe is used to inspect the health of a corner radius within an elongate internal cavity of a structure. The probe is transported through the cavity on a carriage that maintains the probe a substantially constant distance from the corner radius as the carriage traverses changes in the cross sectional shape of the cavity.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: July 1, 2014
    Assignee: The Boeing Company
    Inventors: Barry A. Fetzer, Patrick Lee Anderson, Hien T. Bui, Steven Ray Walton
  • Publication number: 20140005840
    Abstract: A system and method that allow inspection of hollow structures made of composite material, such as an integrally stiffened wing box of an aircraft. A wing box comprises top and bottom skins connected by a plurality of spaced spars. The system employs a plurality of scanners for inspecting different portions of each spar. The system uses dynamically controlled magnetic coupling to connect an external drive tractor to computer-controlled scanners that carry respective sensors, e.g., linear ultrasonic transducer arrays. A system operator can control the various components by means of a graphical user interface comprising multiple interaction regions that represent the individual scanner motion paths and are associated with respective motion script files.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: THE BOEING COMPANY
    Inventors: William P. Motzer, James C. Kennedy, Michael C. Hutchinson, Martin L. Freet, Ronald E. VonWahlde, Steven Ray Walton, Jeffry J. Garvey, Scott W. Lea, James J. Troy, Daniel James Wright, Hien T. Bui, Michael Joseph Duncan, Mark L. Little, William Joseph Tapia, Barry A. Fetzer
  • Publication number: 20130340531
    Abstract: System and method for enabling ultrasonic inspection of a variable and irregular shape. The system comprises one or more ultrasonic pulser/receivers, one or more ultrasonic transducer arrays, a shoe or jig to hold and position the array(s), data acquisition software to drive the array(s), and data analysis software to select a respective best return signal for each pixel to be displayed. This system starts with information about the general orientation of the array relative to the part and a general predicted part shape. More specific orientation of the transmitted ultrasound beams relative to the part surface is done electronically by phasing the elements in the array(s) to cover the expected (i.e., predicted) surface as well as the full range of part surface variability.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 26, 2013
    Applicant: THE BOEING COMPANY
    Inventors: Michael C. Hutchinson, James C. Kennedy, Barry A. Fetzer, Michael Joseph Duncan, Navpreet S. Grewal, Steven Ray Walton, Hien T. Bui
  • Publication number: 20130298682
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 14, 2013
    Applicant: THE BOEING COMPANY
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy