Patents by Inventor Steven Rosenberg

Steven Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11903966
    Abstract: Genetically modified compositions, such as non-viral vectors and T cells, for treating cancer are disclosed. Also disclosed are the methods of making and using the genetically modified compositions in treating cancer.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: February 20, 2024
    Assignees: REGENTS OF THE UNIVERSITY OF MINNESOTA, INTIMA BIOSCIENCE, INC., The U.S.A., as represented by the Secretary, Department f Health and Human Services
    Inventors: Branden Moriarity, Beau Webber, Modassir Choudhry, Steven A. Rosenberg, Douglas C. Palmer, Nicholas P. Restifo
  • Patent number: 11897933
    Abstract: Disclosed is an isolated or purified T cell receptor (TCR) having antigenic specificity for mutated Kirsten rat sarcoma viral oncogene homolog (KRAS) presented in the context of an HLA-Cw*0802 molecule. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: February 13, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Eric Tran, Yong-Chen Lu, Anna Pasetto, Paul F. Robbins, Steven A. Rosenberg, Zhili Zheng
  • Patent number: 11898207
    Abstract: Disclosed are methods of isolating paired T cell receptor (TCR) alpha and beta chain sequences, or an antigen-binding portion thereof. Also disclosed are methods of automatically identifying the TCR alpha and beta chain V segment sequences and CDR3 sequences of a TCR having antigenic specificity for a mutated amino acid sequence encoded by a cancer-specific mutation. Methods of preparing a population of cells that express paired TCR alpha and beta chain sequences, or an antigen-binding portion thereof, are also disclosed. Isolated pairs of TCR alpha and beta chain sequences and isolated populations of cells prepared by the methods are also disclosed.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: February 13, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Yong-Chen Lu, Peter Fitzgerald, Zhili Zheng, Steven A. Rosenberg
  • Patent number: 11879017
    Abstract: The invention provides chimeric antigen receptors (CARs) comprising an antigen binding domain of human antibody 139, an extracellular hinge domain, a transmembrane domain, and an intracellular domain T cell receptor signaling domain. Nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs are disclosed. Methods of detecting the presence of cancer in a host and methods of treating or preventing cancer in a host are also disclosed.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: January 23, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Richard A Morgan, Steven A. Rosenberg
  • Publication number: 20240009243
    Abstract: Provided herein are methods for delaying or inhibiting T cell maturation or differentiation in vitro for a T cell therapy, comprising contacting one or more T cells from a subject in need of a T cell therapy with an AKT inhibitor and at least one of exogenous Interleukin-7 (IL-7) and exogenous Interleukin-15 (IL-15), wherein the resulting T cells exhibit delayed maturation or differentiation. In some embodiments, the method further comprises administering the one or more T cells to a subject in need of a T cell therapy.
    Type: Application
    Filed: June 26, 2023
    Publication date: January 11, 2024
    Inventors: Arianne PEREZ, Marianna SABATINO, Steven A. ROSENBERG, Nicholas P. RESTIFO
  • Publication number: 20230406904
    Abstract: Disclosed is an isolated or purified T cell receptor (TCR) having antigenic specificity for mutated Kirsten rat sarcoma viral oncogene homolog (KRAS) presented in the context of an HLA-Cw*0802 molecule. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Application
    Filed: May 1, 2023
    Publication date: December 21, 2023
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Serv
    Inventors: Eric Tran, Yong-Chen Lu, Steven A. Rosenberg
  • Patent number: 11840561
    Abstract: Disclosed is an isolated or purified T cell receptor (TCR) having antigenic specificity for mutated Kirsten rat sarcoma viral oncogene homolog (KRAS) presented in the context of an HLA-Cw*0802 molecule. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: December 12, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Eric Tran, Yong-Chen Lu, Anna Pasetto, Paul F. Robbins, Steven A. Rosenberg, Zhili Zheng
  • Publication number: 20230365649
    Abstract: Disclosed is an isolated or purified T cell receptor (TCR), wherein the TCR has antigenic specificity for a mutated human RAS amino acid sequence with a substitution of glycine at position 13 with aspartic acid. The TCRs may recognize G13D RAS presented by an HLA-DQ heterodimer. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Application
    Filed: October 1, 2021
    Publication date: November 16, 2023
    Applicant: The USA, as represented by the Secretary, Department of Health and Human Services
    Inventors: Noam Levin, Frank J. Lowery, III, Biman C. Paria, Steven A. Rosenberg, Rami Yoseph
  • Publication number: 20230340066
    Abstract: Disclosed is a T cell receptor (TCR) having antigenic specificity for an HLA-A2-restricted epitope of human papillomavirus (HPV) 16 E6, E629-38. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, and populations of cells are also provided. Antibodies, or an antigen binding portion thereof, and pharmaceutical compositions relating to the TCRs of the invention are also provided. Also disclosed are methods of detecting the presence of a condition in a mammal and methods of treating or preventing a condition in a mammal, wherein the condition is cancer, HPV 16 infection, or HPV-positive premalignancy.
    Type: Application
    Filed: May 25, 2023
    Publication date: October 26, 2023
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Servic
    Inventors: Christian S. Hinrichs, Steven A. Rosenberg
  • Publication number: 20230321240
    Abstract: Disclosed are isolated or purified T cell receptors (TCRs) having antigenic specificity for human p53R273C or human p53Y220C. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Application
    Filed: September 2, 2021
    Publication date: October 12, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Sanghyun Kim, Nikolaos Zacharakis, Steven A. Rosenberg
  • Patent number: 11779601
    Abstract: The invention provides methods of increasing the efficacy of a T cell therapy in a patient in need thereof. The invention includes methods of identifying a patient who would respond well to a T cell therapy or conditioning a patient prior to a T cell therapy so that the patient responds well to a T cell therapy. The conditioning involves administering one or more preconditioning agents prior to a T cell therapy and identifying biomarker cytokines prior to administering a T cell therapy.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: October 10, 2023
    Assignees: Kite Pharma, Inc., The United States of America as represented by the Secretary, Department of Health and Human Services
    Inventors: Adrian Bot, Jeffrey S. Wiezorek, William Go, Rajul Jain, James N. Kochenderfer, Steven A. Rosenberg
  • Publication number: 20230303976
    Abstract: Disclosed are methods of isolating T cells and TCRs having antigenic specificity for a mutated amino acid sequence encoded by a cancer-specific mutation. Also disclosed are related methods of preparing a population of cells, populations of cells, TCRs, pharmaceutical compositions, and methods of treating or preventing cancer.
    Type: Application
    Filed: February 27, 2023
    Publication date: September 28, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Alena Gros, Steven A. Rosenberg
  • Publication number: 20230272038
    Abstract: Disclosed is an isolated or purified T cell receptor (TCR), wherein the TCR has antigenic specificity for a mutated human RAS amino acid sequence with a substitution of glycine at position 12 with aspartic acid. The TCRs may recognize G12D RAS presented by an HLA-DR heterodimer. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Application
    Filed: July 13, 2021
    Publication date: August 31, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Noam Levin, Rami Yoseph, Gal Cafri, Steven A. Rosenberg
  • Publication number: 20230265387
    Abstract: Methods of obtaining a cell population enriched for tumor-reactive T cells, the method comprising: (a) obtaining a bulk population of T cells from a tumor sample; (b) specifically selecting CD8+ T cells that express any one or more of TIM-3, LAG-3, 4-1BB, and PD-1 from the bulk population; and (c) separating the cells selected in (b) from unselected cells to obtain a cell population enriched for tumor-reactive T cells are disclosed. Related methods of administering a cell population enriched for tumor-reactive T cells to a mammal, methods of obtaining a pharmaceutical composition comprising a cell population enriched for tumor-reactive T cells, and isolated or purified cell populations are also disclosed.
    Type: Application
    Filed: January 6, 2023
    Publication date: August 24, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Alena Gros, Steven A. Rosenberg
  • Publication number: 20230258635
    Abstract: Disclosed are methods of obtaining a cell population enriched for T cells with a phenotype, the method comprising: (a) obtaining a bulk population of T cells from a tumor sample of a patient; (b) specifically selecting T cells with a phenotype comprising markers CD3+, CD39?, and CD69? from the bulk population; and (c) separating the cells selected in (b) from cells which lack the phenotype to obtain a cell population enriched for T cells with the phenotype. Related methods of treating or preventing cancer, methods of selecting a therapy for a cancer patient, and methods for predicting the clinical response to immunotherapy in a cancer patient are also disclosed. Isolated or purified cell population obtained according to the methods and related pharmaceutical compositions are also disclosed.
    Type: Application
    Filed: September 8, 2021
    Publication date: August 17, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Frank J. Lowery, III, Sri Krishna, Paul F. Robbins, Steven A. Rosenberg, Gregoire Y. Altan-Bonnet
  • Publication number: 20230257440
    Abstract: Disclosed is an isolated or purified T cell receptor (TCR), wherein the TCR has antigenic specificity for a mutated human RAS amino acid sequence with a substitution of glycine at position 12 with valine. The TCRs may recognize G12V RAS presented by an HLA-DR heterodimer. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions are also provided. Also disclosed are methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal.
    Type: Application
    Filed: July 15, 2021
    Publication date: August 17, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Noam Levin, Frank J. Lowery, III, Maria R. Parkhurst, Steven A. Rosenberg
  • Patent number: 11723923
    Abstract: Provided herein are methods for delaying or inhibiting T cell maturation or differentiation in vitro for a T cell therapy, comprising contacting one or more T cells from a subject in need of a T cell therapy with an AKT inhibitor and at least one of exogenous Interleukin-7 (IL-7) and exogenous Interleukin-15 (IL-15), wherein the resulting T cells exhibit delayed maturation or differentiation. In some embodiments, the method further comprises administering the one or more T cells to a subject in need of a T cell therapy.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: August 15, 2023
    Assignees: Kite Pharma, Inc., The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Arianne Perez, Marianna Sabatino, Steven A. Rosenberg, Nicholas P. Restifo
  • Patent number: 11697676
    Abstract: Disclosed is a T cell receptor (TCR) having antigenic specificity for an HLA-A2-restricted epitope of human papillomavirus (HPV) 16 E6, E629-38. Related polypeptides and proteins, as well as related nucleic acids, recombinant expression vectors, host cells, and populations of cells are also provided. Antibodies, or an antigen binding portion thereof, and pharmaceutical compositions relating to the TCRs of the invention are also provided. Also disclosed are methods of detecting the presence of a condition in a mammal and methods of treating or preventing a condition in a mammal, wherein the condition is cancer, HPV 16 infection, or HPV-positive premalignancy.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: July 11, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Christian S. Hinrichs, Steven A. Rosenberg
  • Publication number: 20230203124
    Abstract: Disclosed are methods of isolating a TCR having antigenic specificity for a mutated amino acid sequence encoded by a cancer-specific mutation, the method comprising: identifying one or more genes in the nucleic acid of a cancer cell of a patient, each gene containing a cancer-specific mutation that encodes a mutated amino acid sequence; inducing autologous APCs of the patient to present the mutated amino acid sequence; co-culturing autologous T cells of the patient with the autologous APCs that present the mutated amino acid sequence; selecting the autologous T cells; and isolating a nucleotide sequence that encodes the TCR from the selected autologous T cells, wherein the TCR has antigenic specificity for the mutated amino acid sequence encoded by the cancer-specific mutation. Also disclosed are related methods of preparing a population of cells, populations of cells, TCRs, pharmaceutical compositions, and methods of treating or preventing cancer.
    Type: Application
    Filed: December 29, 2022
    Publication date: June 29, 2023
    Applicant: The United States of America, a represented by the Secretary, Department of Health and Human Servi
    Inventors: Eric Tran, Yong-Chen Lu, Paul F. Robbins, Steven A. Rosenberg
  • Patent number: 11679128
    Abstract: Methods of obtaining a cell population enriched for tumor-reactive T cells, the method comprising: (a) obtaining a bulk population of peripheral blood mononuclear cells (PBMCs) from a sample of peripheral blood; (b) specifically selecting CD8+ T cells that also express PD-1 and/or TIM-3 from the bulk population; and (c) separating the cells selected in (b) from unselected cells to obtain a cell population enriched for tumor-reactive T cells are disclosed. Related methods of administering a cell population enriched for tumor-reactive T cells to a mammal, methods of obtaining a pharmaceutical composition comprising a cell population enriched for tumor-reactive T cells, and isolated or purified cell populations are also disclosed.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: June 20, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Alena Gros, Steven A. Rosenberg