Patents by Inventor Steven Roy

Steven Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9399593
    Abstract: A method of forming a glass article includes drawing a glass ribbon from a draw housing in a downstream direction, heating portions of only a bead of the glass ribbon to form compressive stress regions in the bead, scoring the glass ribbon to form a score line on which the glass ribbon is broken. The bead is heated at a position upstream from the score line. An apparatus for manufacturing a glass article includes a draw housing for forming a glass ribbon having a bead, a heating apparatus with a heat source for forming compressive stress regions in portions of only the bead of the glass ribbon, and a scoring apparatus that forms a score line on which the glass ribbon is broken to form the glass article. The heat source moves downstream simultaneously with the glass ribbon.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: July 26, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Anatoli Anatolyevich Abramov, Steven Roy Burdette, Priyank Paras Jain, Jingru Zhang, Rui Zhang
  • Patent number: 9388065
    Abstract: A glass manufacturing apparatus is described herein that comprises a forming device configured to produce a glass ribbon and a pull roll device which draws the glass ribbon downward from the forming device. The pull roll device has a first roll apparatus, a second roll apparatus, and a third roll apparatus. The pull roll device is configured to at least independently operate the first roll apparatus and the second roll apparatus such that at least one of a first upstream pair of draw rolls rotates with a substantially constant torque and at least one of a first downstream pair of draw rolls rotates with a substantially constant angular velocity. In further examples, methods of manufacturing a glass ribbon are provided.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: July 12, 2016
    Assignee: Corning Incorporated
    Inventors: Anmol Agrawal, Steven Roy Burdette, Gautam Narendra Kudva, Michael Yoshiya Nishimoto, Vinay Patel
  • Publication number: 20160185644
    Abstract: A glass manufacturing apparatus comprises a forming device configured to produce a glass ribbon and a control device configured to independently operate a first pull roll apparatus and a second pull roll apparatus such that at least one of a first upstream pair of draw rolls rotates with a substantially constant torque and at least one of a first downstream pair of draw rolls rotates with a substantially constant angular velocity. In further examples, methods of manufacturing a glass ribbon are provided.
    Type: Application
    Filed: March 9, 2016
    Publication date: June 30, 2016
    Inventors: James Gary Anderson, Steven Roy Burdette, Liam Ruan de Paor, Lewis Kirk Klingensmith, Gautam Narendra Kudva, Gary Graham Squier, David John Ulrich
  • Patent number: 9346699
    Abstract: A method for making a glass laminate sheet including: selecting a core glass composition and a clad glass composition combination for a glass laminate structure; determining and comparing the viscosity and coefficient of thermal expansion (CTE) profiles for each of the selected core and the clad glass compositions with each other over a temperature range of interest including the onset of viscoelasticity to ambient temperature; and processing the selected core and clad glass composition in a laminate fusion draw apparatus to form a laminate glass sheet in accordance with at least one difference condition for the clad effective coefficient thermal expansion (CTEeff core) and the core effective coefficient thermal expansion (CTEeff core). Another method for making a glass laminate sheet includes controlling the cooling rate to control the resulting strength of the laminate.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: May 24, 2016
    Assignee: Corning Incorporated
    Inventors: Alexey Sergeyevich Amosov, Steven Roy Burdette, Shriram Palanthandalam Madapusi, Ilia Andreyevich Nikulin
  • Patent number: 9326823
    Abstract: Telemetrical control of a robotic interventional device for minimally invasive surgical procedure is based on an operative interaction between a tracking sub-system, MRI sub-system, navigation sub-system and the robotic interventional device. The tracking sensor sub-system is integrated with the interventional device to produce tracking information corresponding to the robotic interventional device location in the operative site. The navigation sub-system integrates the tracking information with the real-time images of the operative site produced by the MRI sub-system, and displays the integrated information to a user, to enable the telemetrical control of the interventional device for performing an intended procedure (biopsy, tissue resection, etc.). The navigation sub-system, based on the integrated real-time tracking information and real-time images, calculates and dynamically updates coordinates of subsequent imaging slices.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: May 3, 2016
    Assignees: University of Maryland, College Park, University of Maryland, Baltimore
    Inventors: Alan B. McMillan, Rao Gullapalli, Howard M. Richard, III, Steven Roys, Jaydev P. Desai
  • Patent number: 9315409
    Abstract: A glass manufacturing apparatus comprises a forming device configured to produce a glass ribbon and a control device configured to independently operate a first pull roll apparatus and a second pull roll apparatus such that at least one of a first upstream pair of draw rolls rotates with a substantially constant torque and at least one of a first downstream pair of draw rolls rotates with a substantially constant angular velocity. In further examples, methods of manufacturing a glass ribbon are provided.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 19, 2016
    Assignee: Corning Incorporated
    Inventors: James Gary Anderson, Steven Roy Burdette, Liam Ruan de Paor, L. Kirk Klingensmith, Gautam Narendra Kudva, Gary Graham Squier, David John Ulrich
  • Patent number: 9315408
    Abstract: Methods and apparatuses for fabricating continuous glass ribbons are disclosed. The method includes forming the continuous glass ribbon by drawing the continuous glass ribbon from a draw housing in a drawing direction, heating at least one portion of a central region of the continuous glass ribbon at a heating location downstream of the draw housing, sensing a temperature of the continuous glass ribbon at a sensed temperature location downstream of the draw housing, and automatically controlling the heating of the at least one portion of the central region of the continuous glass ribbon based on the sensed temperature to mitigate distortion of the continuous glass ribbon.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: April 19, 2016
    Assignee: Corning Incorporated
    Inventors: Tomohiro Aburada, Anmol Agrawal, Steven Roy Burdette, Masumi Kihata, Gautam Nerendra Kudva, Michael Yoshiya Nishimoto
  • Publication number: 20160102008
    Abstract: A method of forming a glass article includes drawing a glass ribbon from a draw housing in a downstream direction, heating portions of only a bead of the glass ribbon to form compressive stress regions in the bead, scoring the glass ribbon to form a score line on which the glass ribbon is broken. The bead is heated at a position upstream from the score line. An apparatus for manufacturing a glass article includes a draw housing for forming a glass ribbon having a bead, a heating apparatus with a heat source for forming compressive stress regions in portions of only the bead of the glass ribbon, and a scoring apparatus that forms a score line on which the glass ribbon is broken to form the glass article. The heat source moves downstream simultaneously with the glass ribbon.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 14, 2016
    Inventors: Anatoli Anatolyevich Abramov, Steven Roy Burdette, Priyank Paras Jain, Jingru Zhang, Rui Zhang
  • Publication number: 20160096764
    Abstract: Repositionable heater assemblies and methods of controlling temperature of glass in production lines using the repositionable heater assemblies are disclosed. The repositionable heater assembly includes a support frame, a first sled and a second sled each coupled to the support frame with bearing members that allow the first sled and the second sled to translate in a longitudinal direction. Each of the first sled and the second sled include at least one heating element, where the heating elements are spaced apart from the glass ribbon a spacing distance. The first and second sleds are movable in the longitudinal direction to controlling the spacing distance between the heating elements of the first sled and the second sled and the glass ribbon to manage temperature of the glass ribbon.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 7, 2016
    Inventors: James Gary Anderson, Steven Roy Burdette, Vladislav Yuryevich Golyatin, Jon Anthony Passmore, George Clinton Shay
  • Publication number: 20160091507
    Abstract: The present invention relates to analytical testing devices including micro-environment sensors and methods for assaying coagulation in a fluid sample applied to the micro-environment sensors, and in particular, performing one or more types of coagulation assays using one or more micro-environment sensors in a single point of care combined test cartridge. For example, the present invention may be directed to test sensor including at least one transducer coated with a polymer layer. The polymer layer comprises a thrombin-cleavable peptide with a detectable moiety.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 31, 2016
    Inventors: Tian-Xian Zhao, Anjulia Chiu-Yuk Wong, Glenn Brian Martin, Katrina Petronilla Di Tullio, Isabelle Louisette Thibodeau, Steven Roy Breeze, Smitha RK Sutrala, Eric Hong, Sheila Diane Ball
  • Publication number: 20160091508
    Abstract: The present invention relates to sample analysis cartridges comprising micro-environment sensors and methods for assaying coagulation in a fluid sample applied to the micro-environment sensors, and in particular, to performing coagulation assays using micro-environment sensors in a point of care sample analysis cartridge. For example, the present invention may be directed to a sample analysis cartridge including an inlet chamber configured to receive a biological sample, and a conduit fluidically connected to the inlet chamber and configured to receive the biological sample from the inlet chamber. The conduit may include a micro-environment prothrombin time (PT) sensor, and a micro-environment activated partial thromboplastin time (aPTT) sensor.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 31, 2016
    Inventors: Tian-Xian Zhao, Anjulia Chiu-Yuk Wong, Glenn Brian Martin, Katrina Petronilla Di Tullio, Isabelle Louisette Thibodeau, Steven Roy Breeze, Smitha RK Sutrala, Eric Hong, Jay Kendall Taylor, Sheila Diane Ball
  • Publication number: 20160091455
    Abstract: The present invention relates to analytical testing devices comprising a resistor for cartridge device identification and methods for assaying coagulation in a fluid sample based on the cartridge device identification, and in particular, to performing coagulation assays using a resistor for cartridge device identification in a point of care test cartridge. For example, the present invention may be directed to a chip including an analyte electrode connected to a first connection pin, a reference electrode connected to a second connection pin, and a resistor connected to the second connection pin and a third connection pin.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 31, 2016
    Inventors: Jay Kendall Taylor, Tian-Xian Zhao, Sheila Diane Ball, Kenneth Harold Hardage, Steven Roy Breeze, Joshua David Newlands
  • Patent number: 9290403
    Abstract: Repositionable heater assemblies and methods of controlling temperature of glass in production lines using the repositionable heater assemblies are disclosed. The repositionable heater assembly includes a support frame, a first sled and a second sled each coupled to the support frame with bearing members that allow the first sled and the second sled to translate in a longitudinal direction. Each of the first sled and the second sled include at least one heating element, where the heating elements are spaced apart from the glass ribbon a spacing distance. The first and second sleds are movable in the longitudinal direction to controlling the spacing distance between the heating elements of the first sled and the second sled and the glass ribbon to manage temperature of the glass ribbon.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: March 22, 2016
    Assignee: CORNING INCORPORATED
    Inventors: James Gary Anderson, Steven Roy Burdette, Vladislav Yuryevich Golyatin, Jon Anthony Passmore, George Clinton Shay
  • Publication number: 20160059748
    Abstract: Embodiments of a car seat include an outer protective shell, an inner seat, a suspension system connecting and permitting relative movement between the inner seat and the outer protective shell. The suspension system may include a plurality of deformable webs. Also, at least one padding element may be in contact with and interposed between the outer protective shell and the inner seat. In an accident, regardless of the direction in which the seat is facing and regardless of whether the result is a sudden acceleration and/or deceleration, the inner seat will move inside the frame, and the suspension system will absorb some, much, or all of the energy either by elastic or plastic deformation. Energy not absorbed by the suspension system may be absorbed by the inner seat itself and/or an anchor system used to connect the car seat to a vehicle.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 3, 2016
    Applicant: Pidyon Controls Inc.
    Inventors: Yochanan Cohen, Velissa Van Scoyoc, Ahmet Becene, Alexis Grant, Steven Roy Duke, Ekaterina Kravchenko
  • Publication number: 20150210583
    Abstract: A method for making a glass laminate sheet including: selecting a core glass composition and a clad glass composition combination for a glass laminate structure; determining and comparing the viscosity and coefficient of thermal expansion (CTE) profiles for each of the selected core and the clad glass compositions with each other over a temperature range of interest including the onset of viscoelasticity to ambient temperature; and processing the selected core and clad glass composition in a laminate fusion draw apparatus to form a laminate glass sheet in accordance with at least one difference condition for the clad effective coefficient thermal expansion (CTEeff core) and the core effective coefficient thermal expansion (CTEeff core). Another method for making a glass laminate sheet includes controlling the cooling rate to control the resulting strength of the laminate.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 30, 2015
    Inventors: Alexey Sergeyevich Amosov, Steven Roy Burdette, Shriram Palanthandalam Madapusi, Ilia Andreyevich Nikulin
  • Publication number: 20150157177
    Abstract: A dual roll paper towel dispenser, a method of dispensing towel from a dual roll paper towel dispenser, and a method of servicing a dual roll paper towel dispenser are disclosed herein. The dual roll paper towel dispenser can be provided with a dispenser mechanism disposed in a dispenser housing. The dispenser mechanism can include a first drive roller for dispensing paper from an upper first roll of paper and a second drive roller for dispensing paper from a lower second roll of paper. The dispenser mechanism can further include a drive system including a motor for selectively operating the first drive roller and the second drive roller, wherein the drive system powers the motor in a first rotational direction to actuate the first drive roller and powers the motor in a second rotational direction opposite the first rotational direction to actuate the second drive roller.
    Type: Application
    Filed: November 3, 2014
    Publication date: June 11, 2015
    Inventors: Ken Carper, Adam Elliott, Mark Henson, Dan Knight, Steven Roy Streicher
  • Publication number: 20150096330
    Abstract: A glass manufacturing apparatus comprises a forming device configured to produce a glass ribbon and a control device configured to independently operate a first pull roll apparatus, a second pull roll apparatus, and a third pull roll apparatus such that at least one of a first upstream pair of draw rolls rotates with a substantially constant torque, at least one of a first midstream pair of draw rolls rotates with a substantially constant torque, and at least one of a first downstream pair of draw rolls rotates with a substantially constant angular velocity. In further examples, methods of manufacturing a glass ribbon are provided.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: Corning Incorporated
    Inventors: Tomohiro Aburada, Steven Roy Burdette, Masumi Kihata, Chris Scott Kogge, Gautam Narendra Kudva, Michael Yoshiya Nishimoto, Gary Graham Squier, David John Ulrich
  • Publication number: 20140238077
    Abstract: Repositionable heater assemblies and methods of controlling temperature of glass in production lines using the repositionable heater assemblies are disclosed. The repositionable heater assembly includes a support frame, a first sled and a second sled each coupled to the support frame with bearing members that allow the first sled and the second sled to translate in a longitudinal direction. Each of the first sled and the second sled include at least one heating element, where the heating elements are spaced apart from the glass ribbon a spacing distance. The first and second sleds are movable in the longitudinal direction to controlling the spacing distance between the heating elements of the first sled and the second sled and the glass ribbon to manage temperature of the glass ribbon.
    Type: Application
    Filed: February 25, 2013
    Publication date: August 28, 2014
    Applicant: Corning Incorporated
    Inventors: James Gary Anderson, Steven Roy Burdette, Vladislav Yuryevich Golyatin, Jon Anthony Passmore, George Clinton Shay
  • Patent number: 8796579
    Abstract: A flange (13) for use in direct resistance heating of a glass-carrying vessel (10), such as a finer, is provided. The flange comprises a plurality of electrically-conductive rings which include an innermost ring (140) which is joined to the vessel's exterior wall (12) during use of the flange and an outermost ring (150) which receives electrical current during use of the flange. The innermost ring (140) comprises a high-temperature metal which comprises at least 80% platinum and the outermost ring (150) comprises at least 99.0% nickel. This combination of materials both increases the reliability of the flange and reduces its cost. In certain embodiments, the flange can also include one or more rings (190) composed of a platinum-nickel alloy which has a lower thermal conductivity than platinum or nickel and thus can serve to reduce heat loss through the flange.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventors: Lee Martin Adelsberg, Steven Roy Burdette, Joyce C Gillis Dunbar, James Patrick Murphy
  • Publication number: 20140137601
    Abstract: Methods and apparatuses for fabricating continuous glass ribbons are disclosed. The method includes forming the continuous glass ribbon by drawing the continuous glass ribbon from a draw housing in a drawing direction, heating at least one portion of a central region of the continuous glass ribbon at a heating location downstream of the draw housing, sensing a temperature of the continuous glass ribbon at a sensed temperature location downstream of the draw housing, and automatically controlling the heating of the at least one portion of the central region of the continuous glass ribbon based on the sensed temperature to mitigate distortion of the continuous glass ribbon.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Tomohiro Aburada, Anmol Agrawal, Steven Roy Burdette, Masumi Kihata, Gautam Narendra Kudva, Michael Yoshiya Nishimoto