Patents by Inventor Steven S. Kaye

Steven S. Kaye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10205158
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: February 12, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Shrikant N. Khot, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li
  • Patent number: 9960413
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 1, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Shrikant N. Khot, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li, Murali G. Theivanayagam, Ing-feng Hu, Xindi Yu, Stacie L. Santhany, Christopher P. Rentsch
  • Publication number: 20180040883
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 8, 2018
    Applicant: Dow Global Technologies LLC
    Inventors: Shrikant N. KHOT, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li
  • Patent number: 9793538
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: October 17, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Shrikant N. Khot, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li
  • Publication number: 20150311527
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed. These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 29, 2015
    Inventors: Shrikant N. KHOT, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li
  • Publication number: 20150311505
    Abstract: Particulate LMFP cathode materials having high manganese contents and small amounts of dopant metals are disclosed These cathode materials are made by milling a mixture of precursor materials in a wet or dry milling process. Preferably, off-stoichiometric amounts of starting materials are used to make the cathode materials. Unlike other high manganese LMFP materials, these cathode materials provide high specific capacities, very good cycle life and high energies even at high discharge rates.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 29, 2015
    Inventors: Shrikant N. KHOT, Deidre A. Strand, Jamie L. Cohen, Thierry Drezen, Steven S. Kaye, Bin Li, Murali G. Theivanayagam, Ing-feng HU, Xindi Yu, Stacie L. Santhany, Christopher P. Rentsch
  • Publication number: 20150099193
    Abstract: A lithium ion secondary battery that operates at a high voltage, has a high cycle life, and generates less gas, and an electrolytic solution for such a lithium ion secondary battery. An electrolytic solution for a non-aqueous energy storage device, comprising: a non-aqueous solvent; a lithium salt (A) having no boron atom; a predetermined lithium salt (B) containing a boron atom; and a compound (C) in which at least one of hydrogen atoms in an acid selected from the group consisting of proton acids having a phosphorus atom and/or a boron atom, sulfonic acids, and carboxylic acids is replaced with a substituent represented by formula (3): wherein R3, R4, and R5 each independently represent an organic group which has 1 to 10 carbon atoms and which may have a substituent.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Shinya Hamasaki, Aya Inaba, Keiko Sumino, Yusuke Shigemori, Gang Cheng, Steven S. Kaye, Bin Li
  • Publication number: 20140120414
    Abstract: Described herein are materials for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high stability during battery cycling up to high temperatures high voltages, high discharge capacity, high coulombic efficiency, and excellent retention of discharge capacity and coulombic efficiency over several cycles of charging and discharging. In some embodiments, a high voltage electrolyte includes a base electrolyte and a set of additive compounds, which impart these desirable performance characteristics.
    Type: Application
    Filed: January 3, 2014
    Publication date: May 1, 2014
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Vinay V. Bhat, Gang Cheng, Steven S. Kaye, Bin Li, Risa Olugbile, Jen-Hsien Yang
  • Patent number: 8703344
    Abstract: Described herein are materials for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high stability during battery cycling up to high temperatures high voltages, high discharge capacity, high coulombic efficiency, and excellent retention of discharge capacity and coulombic efficiency over several cycles of charging and discharging. In some embodiments, a high voltage electrolyte includes a base electrolyte and a set of additive compounds, which impart these desirable performance characteristics.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 22, 2014
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Vinay V. Bhat, Gang Cheng, Steven S. Kaye, Bin Li, Risa Olugbile, Jen-Hsien Yang
  • Publication number: 20130202804
    Abstract: A method for preparing stable dispersions of high strength polymers where the polymer particles are micron-sized or submicron-sized and dispersions and dry powders prepared from this method. The method includes swelling the high strength polymer particles and mechanically milling them to reduce particle size. Films, coatings, and other useful articles can be prepared from such dispersions and powders.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: WILDCAT DISCOVERY TECHNOLOGIES, INC.
    Inventors: Mark S. Bailey, Doron Greenberg, Steven S. Kaye
  • Patent number: 8454855
    Abstract: Described herein are hydrogen storage materials having desirable characteristics for a variety of applications, such as automobile applications. In one embodiment, a hydrogen storage material includes: (1) a mixed imide having a formula LiiMgjNkHl; and (2) a set of additives; wherein each of i, k, and l is in the range of 1.7 to 2.3, and j is in the range of 0.7 to 1.3; and wherein the hydrogen storage material is configured to absorb at least 3.1 wt. % of H2 within 30 minutes of exposure to H2 gas at a temperature in the range of 100° C. to 140° C. and a pressure in the range of 45 bar to 50 bar.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: June 4, 2013
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Mark S. Bailey, Steven S. Kaye, Bin Li
  • Publication number: 20130059200
    Abstract: Described herein are materials for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high stability during battery cycling up to high temperatures high voltages, high discharge capacity, high coulombic efficiency, and excellent retention of discharge capacity and coulombic efficiency over several cycles of charging and discharging. In some embodiments, a high voltage electrolyte includes a base electrolyte and a set of additive compounds, which impart these desirable performance characteristics.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 7, 2013
    Inventors: Vinay V. BHAT, Gang CHENG, Steven S. Kaye, Bin LI, Risa OLUGBILE, Jen-Hsien YANG
  • Publication number: 20120328939
    Abstract: Described herein are materials for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high stability during battery cycling up to high temperatures high voltages, high discharge capacity, high coulombic efficiency, and excellent retention of discharge capacity and coulombic efficiency over several cycles of charging and discharging. In some embodiments, a high voltage electrolyte includes a base electrolyte and a set of additive compounds, which impart these desirable performance characteristics.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 27, 2012
    Inventors: Vinay V. BHAT, Gang CHENG, Steven S. Kaye, Bin LI, Risa OLUGBILE, Jen-Hsien YANG
  • Publication number: 20110123632
    Abstract: Described herein are nanoscale adjuvants for use in pharmaceutical compositions. In one embodiment, a pharmaceutical composition includes: (a) a vaccine; and (b) a nanoscale adjuvant including an aluminum compound in the form of clusters having a peak size in the sub-micron range.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 26, 2011
    Applicant: WILDCAT DISCOVERY TECHNOLOGIES, INC.
    Inventors: Steven S. Kaye, Whitney Fies, Yu Liu