Patents by Inventor Steven Sapp

Steven Sapp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120156845
    Abstract: A method for forming a field effect transistor and Schottky diode includes forming a well region in a first portion of a silicon region where the field effect transistor is to be formed but not in a second portion of the silicon region where the Schottky diode is to be formed. Gate trenches are formed extending into the silicon region. A recessed gate is formed in each gate trench. A dielectric cap is formed over each recessed gate. Exposed surfaces of the well region are recessed to form a recess between every two adjacent trenches. Without masking any portion of the active area, a zero-degree blanket implant is performed to form a heavy body region of the second conductivity type in the well region between every two adjacent trenches.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 21, 2012
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Christopher Boguslaw Kocon, Steven Sapp, Paul Thorup, Dean Probst, Robert Herrick, Becky Losee, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Patent number: 8198677
    Abstract: MOSFET devices for RF applications that use a trench-gate in place of the lateral gate conventionally used in lateral MOSFET devices. A trench-gate provides devices with a single, short channel for high frequency gain. Embodiments of the present invention provide devices with an asymmetric oxide in the trench gate, as well as LDD regions that lower the gate-drain capacitance for improved RF performance. Refinements to these TG-LDMOS devices include placing a source-shield conductor below the gate and placing two gates in a trench-gate region. These improve device high-frequency performance by decreasing gate-to-drain capacitance. Further refinements include adding a charge balance region to the LDD region and adding source-to-substrate or drain-to-substrate vias.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: June 12, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Peter H. Wilson, Steven Sapp
  • Patent number: 8193570
    Abstract: A synchronous buck converter includes a high-side switch and a low-side switch serially coupled to one another. The low-side switch includes a field effect transistor that comprises: a trench extending into a drift region of the field effect transistor; a shield electrode in a lower portion of the trench, wherein the shield electrode is insulated from the drift region by a shield dielectric; a gate electrode in the trench over the shield electrode, wherein the gate electrode is insulated from the shield electrode by an inter-electrode dielectric; source regions adjacent the trench; a source metal contacting the source regions; and a resistive element having one end contacting the shield electrode and another end contacting the source metal in the field effect transistor.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: June 5, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven Sapp, Ashok Challa, Christopher B. Kocon
  • Patent number: 8084327
    Abstract: A method for forming a field effect transistor with an active area and a termination region surrounding the active area includes forming a well region in a first silicon region, where the well region and the first silicon region are of opposite conductivity type. Gate trenches extending through the well region and terminating within the first silicon region are formed. A recessed gate is formed in each gate trench. A dielectric cap is formed over each recessed gate. The well region is recessed between adjacent trenches to expose upper sidewalls of each dielectric cap. A blanket source implant is carried out to form a second silicon region in an upper portion of the recessed well region between every two adjacent trenches. A dielectric spacer is formed along each exposed upper sidewall of the dielectric cap, with every two adjacent dielectric spacers located between every two adjacent gate trenches forming an opening over the second silicon region.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: December 27, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Steven Sapp
  • Publication number: 20110303975
    Abstract: A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 15, 2011
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Patent number: 8072027
    Abstract: Semiconductor devices and methods for making such devices that contain a 3D channel architecture are described. The 3D channel architecture is formed using a dual trench structure containing with a plurality of lower trenches extending in an x and y directional channels and separated by a mesa and an upper trench extending in a y direction and located in an upper portion of the substrate proximate a source region. Thus, smaller pillar trenches are formed within the main line-shaped trench. Such an architecture generates additional channel regions which are aligned substantially perpendicular to the conventional line-shaped channels. The channel regions, both conventional and perpendicular, are electrically connected by their corner and top regions to produce higher current flow in all three dimensions. With such a configuration, higher channel density, a stronger inversion layer, and a more uniform threshold distribution can be obtained for the semiconductor device. Other embodiments are described.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: December 6, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Suku Kim, Dan Calafut, Ihsiu Ho, Dan Kinzer, Steven Sapp, Ashok Challa, Seokjin Jo, Mark Larsen
  • Publication number: 20110284955
    Abstract: In accordance with an embodiment of the present invention, a MOSFET includes a first semiconductor region having a first surface, a first insulation-filled trench region extending from the first surface into the first semiconductor region, and strips of semi-insulating material along the sidewalls of the first insulation-filled trench region. The strips of semi-insulating material may be insulated from the first semiconductor region.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Steven Sapp, Peter H. Wilson
  • Patent number: 8044463
    Abstract: A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: October 25, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Brian S. Mo, Duc Chau, Steven Sapp, Izak Bencuya, Dean E. Probst
  • Patent number: 7977744
    Abstract: A MOSFET comprises a first semiconductor region having a first surface, a first insulation-filled trench region extending from the first surface into the first semiconductor region, and strips of semi-insulating material along the sidewalls of the first insulation-filled trench region. The strips of semi-insulating material are insulated from the first semiconductor region.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: July 12, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven Sapp, Peter H. Wilson
  • Publication number: 20110163732
    Abstract: A synchronous buck converter includes a high-side switch and a low-side switch serially coupled to one another. The low-side switch includes a field effect transistor that comprises: a trench extending into a drift region of the field effect transistor; a shield electrode in a lower portion of the trench, wherein the shield electrode is insulated from the drift region by a shield dielectric; a gate electrode in the trench over the shield electrode, wherein the gate electrode is insulated from the shield electrode by an inter-electrode dielectric; source regions adjacent the trench; a source metal contacting the source regions; and a resistive element having one end contacting the shield electrode and another end contacting the source metal in the field effect transistor.
    Type: Application
    Filed: July 29, 2010
    Publication date: July 7, 2011
    Inventors: Steven Sapp, Ashok Challa, Christopher B. Kocon
  • Publication number: 20100308402
    Abstract: Semiconductor devices and methods for making such devices that contain a 3D channel architecture are described. The 3D channel architecture is formed using a dual trench structure containing with a plurality of lower trenches extending in an x and y directional channels and separated by a mesa and an upper trench extending in a y direction and located in an upper portion of the substrate proximate a source region. Thus, smaller pillar trenches are formed within the main line-shaped trench. Such an architecture generates additional channel regions which are aligned substantially perpendicular to the conventional line-shaped channels. The channel regions, both conventional and perpendicular, are electrically connected by their corner and top regions to produce higher current flow in all three dimensions. With such a configuration, higher channel density, a stronger inversion layer, and a more uniform threshold distribution can be obtained for the semiconductor device. Other embodiments are described.
    Type: Application
    Filed: June 8, 2009
    Publication date: December 9, 2010
    Inventors: Suku Kim, Dan Calafut, Ihsiu Ho, Dan Kinzer, Steven Sapp, Ashok Challa, Seokjin Jo, Mark Larsen
  • Publication number: 20100264487
    Abstract: A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
    Type: Application
    Filed: April 7, 2010
    Publication date: October 21, 2010
    Inventors: Brian Sze-Ki Mo, Duc Chau, Steven Sapp, Izak Bencuya, Dean Edward Probst
  • Publication number: 20100267200
    Abstract: A semiconductor die package is disclosed. The semiconductor die package comprises a metal substrate, and a semiconductor die comprising a first surface comprising a first electrical terminal, a second surface including a second electrical terminal, and at least one aperture. The metal substrate is attached to the second surface. A plurality of conductive structures is on the semiconductor die, and includes at least one conductive structure disposed in the at least one aperture. Other conductive structures may be disposed on the first surface of the semiconductor die.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 21, 2010
    Inventors: Hamza Yilmaz, Steven Sapp, Qi Wang, Minhua Li, James J. Murphy, John Robert Diroll
  • Publication number: 20100258855
    Abstract: A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches include a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
    Type: Application
    Filed: June 23, 2010
    Publication date: October 14, 2010
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Patent number: 7768075
    Abstract: A semiconductor die package is disclosed. The semiconductor die package comprises a metal substrate, and a semiconductor die comprising a first surface comprising a first electrical terminal, a second surface including a second electrical terminal, and at least one aperture. The metal substrate is attached to the second surface. A plurality of conductive structures is on the semiconductor die, and includes at least one conductive structure disposed in the at least one aperture. Other conductive structures may be disposed on the first surface of the semiconductor die.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: August 3, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Steven Sapp, Qi Wang, Minhua Li, James J. Murphy, John Robert Diroll
  • Patent number: 7767524
    Abstract: A method of forming a charge balance MOSFET includes the following steps. A substrate with an overlying epitaxial layer both of a first conductivity type, are provided. A gate trench extending through the epitaxial layer and terminating within the substrate is formed. A shield dielectric lining sidewalls and bottom surface of the gate trench is formed. A shield electrode is formed in the gate trench. A gate dielectric layer is formed along upper sidewalls of the gate trench. A gate electrode is formed in the gate trench such that the gate electrode extends over but is insulated from the shield electrode. A deep dimple extending through the epitaxial layer and terminating within the substrate is formed such that the deep dimple is laterally spaced from the gate trench. The deep dimple is filled with silicon material of the second conductivity type.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: August 3, 2010
    Assignee: Fairchild Semiconductor Corporatiion
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Patent number: 7768064
    Abstract: A field effect transistor is disclosed. In one embodiment, the field effect transistor includes a trench extending into a drift region of the field effect transistor. A shield electrode in a lower portion of the trench is insulated from the drift region by a shield dielectric. A gate electrode in the trench over the shield electrode is insulated from the shield electrode by an inter-electrode dielectric. A source region is formed adjacent the trench. A resistive element is coupled to the shield electrode and to a source region in the field effective transistor.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: August 3, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven Sapp, Ashok Challa, Christopher B. Kocon
  • Patent number: 7768034
    Abstract: An electrostatic discharge (ESD) protection network for power MOSFETs includes parallel branches, containing polysilicon zener diodes and resistors, used for protecting the gate from rupture caused by high voltages caused by ESD. The branches may have the same or independent paths for voltage to travel across from the gate region into the semiconductor substrate. Specifically, the secondary branch has a higher breakdown voltage than the primary branch so that the voltage is shared across the two branches of the protection network. The ESD protection network of the device provides a more effective design without increasing the space used on the die. The ESD protection network can also be used with other active and passive devices such as thyristors, insulated-gate bipolar transistors, and bipolar junction transistors.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: August 3, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Daniel S. Calafut, Hamza Yilmaz, Steven Sapp
  • Patent number: 7736978
    Abstract: A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: June 15, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Brian Sze-Ki Mo, Duc Chau, Steven Sapp, Izak Bencuya, Dean Edward Probst
  • Publication number: 20100112767
    Abstract: A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
    Type: Application
    Filed: January 11, 2010
    Publication date: May 6, 2010
    Inventors: Brian Sze-Ki Mo, Duc Chau, Steven Sapp, Izak Bencuya, Dean Edward Probst