Patents by Inventor Steven T. Boyce

Steven T. Boyce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9089417
    Abstract: A device, and method of making the device, capable of therapeutic treatment and/or for in vitro testing of human skin. The device may be used on skin wounds for burned, injured, or diseased skin, and provides structures and functions as in normal uninjured skin, such as barrier function, which is a definitive property of normal skin. The device contains cultured dermal and epidermal cells on a biocompatible, biodegradable reticulated matrix. All or part of the cells may be autologous, from the recipient of the cultured skin device, which advantageously eliminates concerns of tissue compatibility. The cells may also be modified genetically to provide one or more factors to facilitate healing of the engrafted skin replacement, such as an angiogenic factor to stimulate growth of blood vessels.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: July 28, 2015
    Inventor: Steven T. Boyce
  • Publication number: 20140287020
    Abstract: A device, and method of making the device, capable of therapeutic treatment and/or for in vitro testing of human skin. The device may be used on skin wounds for burned, injured, or diseased skin, and provides structures and functions as in normal uninjured skin, such as barrier function, which is a definitive property of normal skin. The device contains cultured dermal and epidermal cells on a biocompatible, biodegradable reticulated matrix. All or part of the cells may be autologous, from the recipient of the cultured skin device, which advantageously eliminates concerns of tissue compatibility. The cells may also be modified genetically to provide one or more factors to facilitate healing of the engrafted skin replacement, such as an angiogenic factor to stimulate growth of blood vessels.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Applicants: University of Cincinnati, Shriners Hospitals for Children
    Inventor: Steven T. Boyce
  • Patent number: 8765468
    Abstract: A device, and method of making the device, capable of therapeutic treatment and/or for in vitro testing of human skin. The device may be used on skin wounds for burned, injured, or diseased skin, and provides structures and functions as in normal uninjured skin, such as barrier function, which is a definitive property of normal skin. The device contains cultured dermal and epidermal cells on a biocompatible, biodegradable reticulated matrix. All or part of the cells may be autologous, from the recipient of the cultured skin device, which advantageously eliminates concerns of tissue compatibility. The cells may also be modified genetically to provide one or more factors to facilitate healing of the engrafted skin replacement, such as an angiogenic factor to stimulate growth of blood vessels.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 1, 2014
    Assignees: University of Cincinnati, Shriners Hospitals for Children
    Inventor: Steven T. Boyce
  • Publication number: 20130259919
    Abstract: A device, and method of making the device, capable of therapeutic treatment and/or for in vitro testing of human skin. The device may be used on skin wounds for burned, injured, or diseased skin, and provides structures and functions as in normal uninjured skin, such as barrier function, which is a definitive property of normal skin. The device contains cultured dermal and epidermal cells on a biocompatible, biodegradable reticulated matrix. All or part of the cells may be autologous, from the recipient of the cultured skin device, which advantageously eliminates concerns of tissue compatibility. The cells may also be modified genetically to provide one or more factors to facilitate healing of the engrafted skin replacement, such as an angiogenic factor to stimulate growth of blood vessels.
    Type: Application
    Filed: May 24, 2013
    Publication date: October 3, 2013
    Inventor: Steven T. Boyce
  • Patent number: 8450108
    Abstract: A device, and method of making the device, capable of therapeutic treatment and/or for in vitro testing of human skin. The device may be used on skin wounds for burned, injured, or diseased skin, and provides structures and functions as in normal uninjured skin, such as barrier function, which is a definitive property of normal skin. The device contains cultured dermal and epidermal cells on a biocompatible, biodegradable reticulated matrix. All or part of the cells may be autologous, from the recipient of the cultured skin device, which advantageously eliminates concerns of tissue compatibility. The cells may also be modified genetically to provide one or more factors to facilitate healing of the engrafted skin replacement, such as an angiogenic factor to stimulate growth of blood vessels.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: May 28, 2013
    Assignees: University of Cincinnati, Shriners Hospitals for Children
    Inventor: Steven T. Boyce
  • Publication number: 20100254955
    Abstract: A device, and method of making the device, capable of therapeutic treatment and/or for in vitro testing of human skin. The device may be used on skin wounds for burned, injured, or diseased skin, and provides structures and functions as in normal uninjured skin, such as barrier function, which is a definitive property of normal skin. The device contains cultured dermal and epidermal cells on a biocompatible, biodegradable reticulated matrix. All or part of the cells may be autologous, from the recipient of the cultured skin device, which advantageously eliminates concerns of tissue compatibility. The cells may also be modified genetically to provide one or more factors to facilitate healing of the engrafted skin replacement, such as an angiogenic factor to stimulate growth of blood vessels.
    Type: Application
    Filed: June 18, 2010
    Publication date: October 7, 2010
    Applicants: University of Cincinnati, Shriners Hospitals For Childrens
    Inventor: Steven T. Boyce
  • Patent number: 7741116
    Abstract: A device, and method of making the device, capable of therapeutic treatment and/or for in vitro testing of human skin. The device may be used on skin wounds for burned, injured, or diseased skin, and provides structures and functions as in normal uninjured skin, such as barrier function, which is a definitive property of normal skin. The device contains cultured dermal and epidermal cells on a biocompatible, biodegradable reticulated matrix. All or part of the cells may be autologous, from the recipient of the cultured skin device, which advantageously eliminates concerns of tissue compatibility. The cells may also be modified genetically to provide one or more factors to facilitate healing of the engrafted skin replacement, such as an angiogenic factor to stimulate growth of blood vessels.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: June 22, 2010
    Assignees: University of Cincinnati, Shriners Hospitals For Childrens
    Inventor: Steven T. Boyce
  • Publication number: 20090111181
    Abstract: An apparatus and method of using the apparatus to prepare a biocompatible biodegradable matrix capable of supporting cells to form an implantable or engraftable surgical device. A matrix-forming fluid is contained within a chamber defined by top and bottom surfaces of a thermally conductive material and spacers defining the thickness of the matrix. The chamber is then cooled to freeze the solution at a controlled rate, resulting in a matrix with a desired and uniform thickness having symmetric and uniform reticulations. The apparatus and method reproducibly forms such a matrix, which may be populated with cells for transplantation and engraftment into a wound.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 30, 2009
    Inventor: Steven T. Boyce
  • Patent number: 7452720
    Abstract: An apparatus and method of using the apparatus to prepare a biocompatible biodegradable matrix capable of supporting cells to form an implantable or engraftable surgical device. A matrix-forming fluid is contained within a chamber defined by top and bottom surfaces of a thermally conductive material and spacers defining the thickness of the matrix. The chamber is then cooled to freeze the solution at a controlled rate, resulting in a matrix with a desired and uniform thickness having symmetric and uniform reticulations. The apparatus and method reproducibly forms such a matrix, which may be populated with cells for transplantation and engraftment into a wound.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: November 18, 2008
    Assignees: University of Cincinnati, Shriners Hospitals for Children
    Inventor: Steven T. Boyce
  • Patent number: 6905105
    Abstract: An apparatus and method of using the apparatus to prepare a biocompatible biodegradable matrix capable of supporting cells to form an implantable or engraftable surgical device. A matrix-forming fluid is contained within a chamber defined by top and bottom surfaces of a thermally conductive material and spacers defining the thickness of the matrix. The chamber is then cooled to freeze the solution at a controlled rate, resulting in a matrix with a desired and uniform thickness having symmetric and uniform reticulations. The apparatus and method reproducibly forms such a matrix, which may be populated with cells for transplantation and engraftment into a wound.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: June 14, 2005
    Assignees: University of Cincinnati, Shriners Hospitals for Children
    Inventor: Steven T. Boyce
  • Publication number: 20030170892
    Abstract: A device, and method of making the device, capable of therapeutic treatment and/or for in vitro testing of human skin. The device may be used on skin wounds for burned, injured, or diseased skin, and provides structures and functions as in normal uninjured skin, such as barrier function, which is a definitive property of normal skin. The device contains cultured dermal and epidermal cells on a biocompatible, biodegradable reticulated matrix. All or part of the cells may be autologous, from the recipient of the cultured skin device, which advantageously eliminates concerns of tissue compatibility. The cells may also be modified genetically to provide one or more factors to facilitate healing of the engrafted skin replacement, such as an angiogenic factor to stimulate growth of blood vessels.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Applicant: University of Cincinnati
    Inventor: Steven T. Boyce
  • Publication number: 20030171705
    Abstract: An apparatus and method of using the apparatus to prepare a biocompatible biodegradable matrix capable of supporting cells to form an implantable or engraftable surgical device. A matrix-forming fluid is contained within a chamber defined by top and bottom surfaces of a thermally conductive material and spacers defining the thickness of the matrix. The chamber is then cooled to freeze the solution at a controlled rate, resulting in a matrix with a desired and uniform thickness having symmetric and uniform reticulations. The apparatus and method reproducibly forms such a matrix, which may be populated with cells for transplantation and engraftment into a wound.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Applicant: University of Cincinnati
    Inventor: Steven T. Boyce
  • Patent number: 5711172
    Abstract: A method and apparatus for forming a permanent, composite skin replacement consisting of an epidermal component and a porous, resorbable, biosynthetic laminated dermal membrane component for use in wound repair. The dermal membrane is formed in the apparatus, which permits regulation of variables affecting membrane structure. The dermal membrane may be modified to incorporate biologically active molecules to enhance wound repair and to reduce infection when the skin replacement is applied to a wound.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: January 27, 1998
    Assignee: The Regents of the University of California
    Inventor: Steven T. Boyce
  • Patent number: 4673649
    Abstract: Disclosed are novel methods and materials for generating in vitro cultured populations of human epidermal keratinocyte cells having a characteristic colony-forming efficiency of greater than 20%. Novel media preparations and procedures are disclosed that permit isolation, serum-free primary culture and serum-free serial subculture of human epidermal keratinocytes. Also disclosed are procedures and products employing keratinocyte cells grown in serum-free conditions for medical application, i.e., skin grafting.
    Type: Grant
    Filed: July 15, 1983
    Date of Patent: June 16, 1987
    Assignee: University Patents, Inc.
    Inventors: Steven T. Boyce, Richard G. Ham