Patents by Inventor Steven T. Deininger
Steven T. Deininger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12053635Abstract: Seals used within lead passageways of implantable medical devices for creating a seal to implantable medical leads inserted into the lead passageways include a body defining a lead passageway with an axial dimension. The body further defines a first circumferential protrusion extending radially a first distance into the lead passageway, and the body further defines a second circumferential protrusion separated from the first circumferential protrusion along the axial dimension. The second circumferential protrusion extends radially a second distance into the lead passageway, the second distance being less than the first distance. The body further defines a first circumferential depression immediately adjacent the first circumferential protrusion and between the first circumferential protrusion and the second circumferential protrusion.Type: GrantFiled: May 6, 2022Date of Patent: August 6, 2024Assignee: MEDTRONIC, INC.Inventors: Steven T. Deininger, Jeffrey J. Clayton
-
Publication number: 20240207623Abstract: An implantable medical device includes an enclosure sleeve and a top cap. The enclosure sleeve comprises an enclosure wall with at least a portion of the enclosure wall comprising the grade 5 titanium and having a thickness between 0.007 inches and 0.009 inches. The enclosure sleeve includes an open top end and an open bottom end that is opposite the open top end. The top cap includes a feedthrough block, a first top cap end portion, and a second top cap end portion. The first top cap end portion is configured to couple to the open top end of the enclosure sleeve, and the second top cap end portion configured to be positioned within the enclosure sleeve.Type: ApplicationFiled: March 4, 2024Publication date: June 27, 2024Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters
-
Patent number: 12017079Abstract: Implantable medical devices include an enclosure that is constructed by machining of a material rather than by forming or stamping. The machining produces one or more internal features within the enclosure. These internal features may include shelves that may act as a stiffener and create separate compartments within the enclosure. These internal features may include contoured edges along the shelves to accommodate conductors and other structures that extend from one compartment to another. These features may include slots that are present in one or more locations, such as on a surface of one of the shelves. These internal features may also include standoffs that establish a gap between an internal component and the external wall of the enclosure. These internal features may also include different thicknesses in different areas of the enclosure, such as one wall thickness in one compartment and a different wall thickness in another compartment.Type: GrantFiled: February 17, 2022Date of Patent: June 25, 2024Assignee: MEDTRONIC, INC.Inventors: Michael J. Baade, Steven T. Deininger, Katherine J. Bach
-
Patent number: 11944826Abstract: An implantable medical device includes an enclosure sleeve and a top cap. The enclosure sleeve comprises an enclosure wall with at least a portion of the enclosure wall comprising the grade 5 titanium and having a thickness between 0.007 inches and 0.009 inches. The enclosure sleeve includes an open top end and an open bottom end that is opposite the open top end. The top cap includes a feedthrough block, a first top cap end portion, and a second top cap end portion. The first top cap end portion is configured to couple to the open top end of the enclosure sleeve, and the second top cap end portion configured to be positioned within the enclosure sleeve.Type: GrantFiled: July 16, 2021Date of Patent: April 2, 2024Assignee: Medtronic, Inc.Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters
-
Patent number: 11890484Abstract: Implantable medical devices have modular lead bores that are constructed from individual lead bore modules. A given modular lead bore utilizes the number of individual lead bore modules necessary for the particular implantable medical device. Each lead bore module has a lead bore passageway and a feedthrough passageway. An electrical contact is present within the lead bore passageway of each lead bore module and the electrical contact is aligned to the lead bore passageway of a lead bore module. Hermetic feedthrough assemblies are also present within the lead bore passageway of each lead bore module. A feedthrough pin passes through a hermetic feedthrough assembly within a feedthrough passageway of each lead bore module. Each feedthrough pin is electrically coupled to a corresponding electrical contact and the medical device circuitry.Type: GrantFiled: December 21, 2022Date of Patent: February 6, 2024Assignee: MEDTRONIC, INC.Inventors: Darren A. Janzig, Andrew Thom, Brad Tischendorf, Randy S. Roles, Steven T. Deininger, Nicholas R. Whitehead
-
Patent number: 11819701Abstract: Medical devices provide metallic connector enclosures. The metallic connector enclosures may be constructed with relatively thin walls in comparison to polymer connector enclosures to aid in miniaturizing the medical device. The metallic connector enclosures may be constructed with interior surfaces that deviate less from an ideal inner surface shape in comparison to polymer connector enclosures to allow for better concentricity of electrical connectors. The metallic connector enclosures may include a panel that allows access to the cavity of the connector enclosure where set screw blocks, lead connectors, spacers, seals, and the like may be located. Furthermore, the lead connectors within the metallic connector enclosures may be separated from the metallic connector enclosure by being positioned within non-conductive seals that reside within features included in cavity walls of the connector enclosure.Type: GrantFiled: September 21, 2020Date of Patent: November 21, 2023Assignee: MEDTRONIC, INC.Inventors: Steven T. Deininger, Jeffrey J. Clayton, Charles E. Peters
-
Patent number: 11806519Abstract: Connector enclosure assemblies for medical devices provide an angled lead passageway. The lead passageway which is defined by electrical connectors and intervening seals within the connector enclosure assembly establishes the angle relative to a base plane of the connector enclosure assembly. Various other aspects may be included in conjunction with the angled lead passageway, including an angled housing of the connector enclosure assembly, feedthrough pins that extend to the electrical connectors where the feedthrough pins may include angled sections, and a set screw passageway set at an angle relative to the lead passageway to provide fixation of a lead within the lead passageway.Type: GrantFiled: November 9, 2020Date of Patent: November 7, 2023Assignee: MEDTRONIC, INC.Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters
-
Publication number: 20230127724Abstract: Implantable medical devices have modular lead bores that are constructed from individual lead bore modules. A given modular lead bore utilizes the number of individual lead bore modules necessary for the particular implantable medical device. Each lead bore module has a lead bore passageway and a feedthrough passageway. An electrical contact is present within the lead bore passageway of each lead bore module and the electrical contact is aligned to the lead bore passageway of a lead bore module. Hermetic feedthrough assemblies are also present within the lead bore passageway of each lead bore module. A feedthrough pin passes through a hermetic feedthrough assembly within a feedthrough passageway of each lead bore module. Each feedthrough pin is electrically coupled to a corresponding electrical contact and the medical device circuitry.Type: ApplicationFiled: December 21, 2022Publication date: April 27, 2023Inventors: Darren A. Janzig, Andrew Thom, Brad Tischendorf, Randy S. Roles, Steven T. Deininger, Nicholas R. Whitehead
-
Publication number: 20230094184Abstract: Disclosed is a medical assembly, according to various embodiments, for providing a therapy to a subject. The assembly is operable to be held relative to a subject for a trial period. The holder may allow for connections and/or passage of connections from the medical device to allow for appropriate or a selected operation of the medical device.Type: ApplicationFiled: June 30, 2022Publication date: March 30, 2023Inventors: Michael J. BAADE, Steven T. DEININGER, Jeff John CLAYTON
-
Patent number: 11559695Abstract: Implantable medical devices have modular lead bores that are constructed from individual lead bore modules. A given modular lead bore utilizes the number of individual lead bore modules necessary for the particular implantable medical device. Each lead bore module has a lead bore passageway and a feedthrough passageway. An electrical contact is present within the lead bore passageway of each lead bore module and the electrical contact is aligned to the lead bore passageway of a lead bore module. Hermetic feedthrough assemblies are also present within the lead bore passageway of each lead bore module. A feedthrough pin passes through a hermetic feedthrough assembly within a feedthrough passageway of each lead bore module. Each feedthrough pin is electrically coupled to a corresponding electrical contact and the medical device circuitry.Type: GrantFiled: December 17, 2019Date of Patent: January 24, 2023Assignee: MEDTRONIC, INC.Inventors: Darren A. Janzig, Andrew Thom, Brad Tischendorf, Randy S. Roles, Steven T. Deininger, Nicholas R. Whitehead
-
Publication number: 20220362559Abstract: Seals used within lead passageways of implantable medical devices for creating a seal to implantable medical leads inserted into the lead passageways include a body defining a lead passageway with an axial dimension. The body further defines a first circumferential protrusion extending radially a first distance into the lead passageway, and the body further defines a second circumferential protrusion separated from the first circumferential protrusion along the axial dimension. The second circumferential protrusion extends radially a second distance into the lead passageway, the second distance being less than the first distance. The body further defines a first circumferential depression immediately adjacent the first circumferential protrusion and between the first circumferential protrusion and the second circumferential protrusion.Type: ApplicationFiled: May 6, 2022Publication date: November 17, 2022Inventors: Steven T. Deininger, Jeffrey J. Clayton
-
Patent number: 11491339Abstract: Seals used within lead bores of implantable medical devices for creating a seal to implantable medical leads inserted into the lead bores include an inner cylinder that engages the lead body. The inner cylinder is surrounded by a gap to either an outer cylinder of the seal or to surrounding structures of the implantable medical device. The inner cylinder has freedom of movement within the gap such that movement of the lead body that is off-axis relative to a centerline of the lead bore causes movement of the inner cylinder that is providing the seal. In this manner, the seal engagement to the lead body is maintained during this off-axis movement of the lead body.Type: GrantFiled: April 26, 2019Date of Patent: November 8, 2022Assignee: MEDTRONIC, INC.Inventors: Steven T. Deininger, Jeffrey Clayton, Thomas M. Hillebrand, Jenna George, Bin Wang, Michael T. Hegland, Darren A. Janzig, Sean P. Skubitz, Richard T. Stone, Dale F. Seeley, Salil M. Vaidya
-
Publication number: 20220176131Abstract: Implantable medical devices include an enclosure that is constructed by machining of a material rather than by forming or stamping. The machining produces one or more internal features within the enclosure. These internal features may include shelves that may act as a stiffener and create separate compartments within the enclosure. These internal features may include contoured edges along the shelves to accommodate conductors and other structures that extend from one compartment to another. These features may include slots that are present in one or more locations, such as on a surface of one of the shelves. These internal features may also include standoffs that establish a gap between an internal component and the external wall of the enclosure. These internal features may also include different thicknesses in different areas of the enclosure, such as one wall thickness in one compartment and a different wall thickness in another compartment.Type: ApplicationFiled: February 17, 2022Publication date: June 9, 2022Inventors: Michael J. Baade, Steven T. Deininger, Katherine J. Bach
-
Publication number: 20220096846Abstract: A leadless neurostimulation device having a header unit including at least one primary electrode having a contact surface that defines an external surface of the leadless neurostimulation device, a housing including a secondary electrode positioned on the same side of the leadless neurostimulation device as the at least one primary electrode, and a anchor device including at least one suture point for securing the leadless neurostimulation device to patient tissue or at least one protrusion nub configured to create mechanical resistance that impedes relative movement between wherein the leadless neurostimulation device and the patient tissue when implanted, where the at least one primary electrode and the secondary electrode are configured to transmit an electrical stimulation signal therebetween to provide electrical stimulation therapy to a target nerve of a patient.Type: ApplicationFiled: September 24, 2021Publication date: March 31, 2022Inventors: Steven T. Deininger, Jerel K. Mueller, Todd V. Smith, Jeffrey Clayton, Thomas M. Hillebrand, Phillip C. Falkner, Jenna N. George, Sarah J. Offutt
-
Patent number: 11253708Abstract: Implantable medical devices include an enclosure that is constructed by machining of a material rather than by forming or stamping. The machining produces one or more internal features within the enclosure. These internal features may include shelves that may act as a stiffener and create separate compartments within the enclosure. These internal features may include contoured edges along the shelves to accommodate conductors and other structures that extend from one compartment to another. These features may include slots that are present in one or more locations, such as on a surface of one of the shelves. These internal features may also include standoffs that establish a gap between an internal component and the external wall of the enclosure. These internal features may also include different thicknesses in different areas of the enclosure, such as one wall thickness in one compartment and a different wall thickness in another compartment.Type: GrantFiled: May 15, 2019Date of Patent: February 22, 2022Assignee: MEDTRONIC, INC.Inventors: Michael J. Baade, Steven T. Deininger, Katherine J. Bach
-
Patent number: 11224753Abstract: Medical devices provide metallic connector enclosures. The metallic connector enclosures may be constructed with relatively thin walls in comparison to polymer connector enclosures to aid in miniaturizing the medical device. The metallic connector enclosures may be constructed with interior surfaces that deviate less from an ideal inner surface shape in comparison to polymer connector enclosures to allow for better concentricity of electrical connectors. The metallic connector enclosures may include a panel that allows access to the cavity of the connector enclosure where set screw blocks, lead connectors, spacers, seals, and the like may be located. Furthermore, the lead connectors within the metallic connector enclosures may be separated from the metallic connector enclosure by being positioned within non-conductive seals that reside within features included in cavity walls of the connector enclosure.Type: GrantFiled: September 28, 2021Date of Patent: January 18, 2022Assignee: Medtronic, Inc.Inventors: Steven T. Deininger, Jeffrey J. Clayton, Charles E. Peters
-
Publication number: 20220008735Abstract: Medical devices provide metallic connector enclosures. The metallic connector enclosures may be constructed with relatively thin walls in comparison to polymer connector enclosures to aid in miniaturizing the medical device. The metallic connector enclosures may be constructed with interior surfaces that deviate less from an ideal inner surface shape in comparison to polymer connector enclosures to allow for better concentricity of electrical connectors. The metallic connector enclosures may include a panel that allows access to the cavity of the connector enclosure where set screw blocks, lead connectors, spacers, seals, and the like may be located. Furthermore, the lead connectors within the metallic connector enclosures may be separated from the metallic connector enclosure by being positioned within non-conductive seals that reside within features included in cavity walls of the connector enclosure.Type: ApplicationFiled: September 28, 2021Publication date: January 13, 2022Inventors: Steven T. Deininger, Jeffrey J. Clayton, Charles E. Peters
-
Publication number: 20210339027Abstract: An implantable medical device includes an enclosure sleeve and a top cap. The enclosure sleeve comprises an enclosure wall with at least a portion of the enclosure wall comprising the grade 5 titanium and having a thickness between 0.007 inches and 0.009 inches. The enclosure sleeve includes an open top end and an open bottom end that is opposite the open top end. The top cap includes a feedthrough block, a first top cap end portion, and a second top cap end portion. The first top cap end portion is configured to couple to the open top end of the enclosure sleeve, and the second top cap end portion configured to be positioned within the enclosure sleeve.Type: ApplicationFiled: July 16, 2021Publication date: November 4, 2021Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters
-
Patent number: 11090499Abstract: An implantable medical device includes an enclosure sleeve that includes grade 5 titanium. Within the enclosure sleeve is a circuit board that includes at least a portion of circuitry that provides a pulse generator and a battery that is electrically coupled to the at least the portion of circuitry. A bottom cap is attached to the enclosure sleeve. A connector block module assembly is coupled to the enclosure sleeve. A plurality of lead connections are within the connector block module assembly with the at least the portion of circuity. Feedthrough pins carry stimulation signals of the pulse generator to the lead connections of the connector block module assembly. A ground conductor extends within the enclosure sleeve and is electrically coupled to the circuit board, and a ground pin is electrically coupled to the ground conductor.Type: GrantFiled: January 13, 2021Date of Patent: August 17, 2021Assignee: Medtronic, Inc.Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters
-
Patent number: 11051905Abstract: Connector enclosure assemblies for medical devices provide an angled lead passageway. The lead passageway which is defined by electrical connectors and intervening seals within the connector enclosure assembly establishes the angle relative to a base plane of the connector enclosure assembly. Various other aspects may be included in conjunction with the angled lead passageway, including an angled housing of the connector enclosure assembly, feedthrough pins that extend to the electrical connectors where the feedthrough pins may include angled sections, and a set screw passageway set at an angle relative to the lead passageway to provide fixation of a lead within the lead passageway.Type: GrantFiled: August 16, 2019Date of Patent: July 6, 2021Assignee: MEDTRONIC, INC.Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters