Patents by Inventor Steven Z. Shi

Steven Z. Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230020717
    Abstract: Examples relate to a print station of a three-dimensional (“3D”) printing apparatus, and method of 3D printing, the print station including a substrate configured to hold a printed object, the substrate having a longitudinal axis, and a print system over the substrate, the print system including a powder distribution device including a blade-shaped end, and a powder uniformization device located at a distance from the powder distribution device along a direction parallel to the longitudinal axis.
    Type: Application
    Filed: July 14, 2021
    Publication date: January 19, 2023
    Applicant: Sakuu Corporation
    Inventors: Morteza VATANI, Siamak AZIZI, Seyed Mohammad SAJADI, Steven Z. SHI
  • Patent number: 10375835
    Abstract: The present invention relates to methods of treating metal surfaces to enhance adhesion or binding to substrates, and devices formed thereby. In some embodiments of the present invention, methods of achieving improved bonding strength without roughening the topography of a metal surface are provided. The metal surface obtained by this method provides strong bonding to resin layers. The bonding interface between the treated metal and the resin layer exhibits resistance to heat, moisture, and chemicals involved in post-lamination process steps, and therefore can suitably be used in the production of PCB's. Methods according to some embodiments of the present invention are especially useful in the fabrication of high density multilayer PCB's, in particular for PCB's having circuits with line/spacing of equal to and less than 10 microns. Methods according to other embodiments of the present invention are particularly useful in the coating of metal surfaces in a wide variety of applications.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: August 6, 2019
    Assignee: Atotech Deutchland GmbH
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Patent number: 9795040
    Abstract: Embodiments of the present invention relates generally to the manufacture of printed circuit boards (PCB's) or printed wiring boards (PWB's), and particularly to methods for treating smooth copper surfaces to increase the adhesion between a copper surface and an organic substrate. More particularly, embodiments of the present invention related to methods of achieving improved bonding strength of PCBs without roughening the topography of the copper surface. The bonding interface between the treated copper and the resin layer of the PCB exhibits excellent resistance to heat, moisture, and chemicals involved in post-lamination process steps.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 17, 2017
    Assignee: Namics Corporation
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Patent number: 9763336
    Abstract: Embodiments of the present invention relate generally to methods of treating metal surfaces to enhance adhesion or binding to substrates, and devices formed thereby. In some embodiments of the present invention, methods of achieving improved bonding strength without roughening the topography of a metal surface are provided. The metal surface obtained by this method provides strong bonding to resin layers. The bonding interface between the treated metal and the resin layer exhibits resistance to heat, moisture, and chemicals involved in post-lamination process steps, and therefore can suitably be used in the production of PCB's. Methods according to some embodiments of the present invention are especially useful in the fabrication of high density multilayer PCB's, in particular for PCB's having circuits with line/spacing of equal to and less than 10 microns.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 12, 2017
    Assignee: Atotech Deutschland GmbH
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Publication number: 20170027065
    Abstract: Embodiments of the present invention relates generally to the manufacture of printed circuit boards (PCB's) or printed wiring boards (PWB's), and particularly to methods for treating smooth copper surfaces to increase the adhesion between a copper surface and an organic substrate. More particularly, embodiments of the present invention related to methods of achieving improved bonding strength of PCBs without roughening the topography of the copper surface. The bonding interface between the treated copper and the resin layer of the PCB exhibits excellent resistance to heat, moisture, and chemicals involved in post-lamination process steps.
    Type: Application
    Filed: April 15, 2016
    Publication date: January 26, 2017
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Publication number: 20160360623
    Abstract: The present invention relates to methods of treating metal surfaces to enhance adhesion or binding to substrates, and devices formed thereby. In some embodiments of the present invention, methods of achieving improved bonding strength without roughening the topography of a metal surface are provided. The metal surface obtained by this method provides strong bonding to resin layers. The bonding interface between the treated metal and the resin layer exhibits resistance to heat, moisture, and chemicals involved in post-lamination process steps, and therefore can suitably be used in the production of PCB's. Methods according to some embodiments of the present invention are especially useful in the fabrication of high density multilayer PCB's, in particular for PCB's having circuits with line/spacing of equal to and less than 10 microns. Methods according to other embodiments of the present invention are particularly useful in the coating of metal surfaces in a wide variety of applications.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 8, 2016
    Inventors: Jen-Chieh WEI, Zhiming LIU, Steven Z. SHI, Werner G. KUHR
  • Patent number: 9345149
    Abstract: Embodiments of the present invention relates generally to the manufacture of printed circuit boards (PCB's) or printed wiring boards (PWB's), and particularly to methods for treating smooth copper surfaces to increase the adhesion between a copper surface and an organic substrate. More particularly, embodiments of the present invention related to methods of achieving improved bonding strength of PCBs without roughening the topography of the copper surface. The bonding interface between the treated copper and the resin layer of the PCB exhibits excellent resistance to heat, moisture, and chemicals involved in post-lamination process steps.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: May 17, 2016
    Assignee: eSionic Corp.
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Publication number: 20150263543
    Abstract: The invention broadly encompasses energy storage devices or systems and more specifically relates to methods of enhancing the performance of electrochemical double layer capacitors (EDLCs), or supercapacitors or ultracapacitors, and devices formed therefrom. In some embodiments, the invention relates generally to energy storage devices, such as EDLCs that use phosphonium-based electrolytes and methods for treating such devices to enhance their performance and operation. Embodiments of the invention further encompass conventional ammonium based electrolytes and phosphonium-based electrolytes comprised of phosphonium ionic liquids, salts, and compositions employed in such EDLCs.
    Type: Application
    Filed: March 16, 2015
    Publication date: September 17, 2015
    Inventors: Wayne L. Gellett, Benjamin L. Rupert, Leanne Beer, Steven Z Shi, Shilpa A. Worlikar
  • Patent number: 8927775
    Abstract: The invention generally encompasses phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, among other applications. In particular, the invention generally relates to phosphonium ionic liquids, salts, compositions, wherein the compositions exhibit superior combination of thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, and electrochemical stability. The invention further encompasses methods of making such phosphonium ionic liquids, salts, compositions, operational devices and systems comprising the same.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: January 6, 2015
    Assignee: eSionic ES, Inc.
    Inventors: Benjamin L. Rupert, Levi J. Irwin, Leanne Beer, Shilpa A. Worlikar, Steven Z. Shi
  • Patent number: 8907133
    Abstract: The invention generally encompasses phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, among other applications. In particular, the invention generally relates to phosphonium ionic liquids, salts, compositions, wherein the compositions exhibit superior combination of thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, and electrochemical stability. The invention further encompasses methods of making such phosphonium ionic liquids, salts, compositions, operational devices and systems comprising the same.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: December 9, 2014
    Assignee: eSionic ES, Inc.
    Inventors: Wayne L. Gellett, Benjamin L. Rupert, Levi J. Irwin, Leanne Beer, Shilpa A. Worlikar, Steven Z. Shi
  • Publication number: 20140266075
    Abstract: The invention broadly encompasses energy storage devices or systems and more specifically relates to methods of enhancing the performance of electrochemical double layer capacitors (EDLCs), or supercapacitors or ultracapacitors, and devices formed therefrom. In some embodiments, the invention relates generally to energy storage devices, such as EDLCs that use phosphonium-based electrolytes and methods for treating such devices to enhance their performance and operation. Embodiments of the invention further encompass phosphonium-based electrolytes comprised of phosphonium ionic liquids, salts, and compositions employed in such EDLCs.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: eSionic ES, Inc.
    Inventors: Wayne L. Gellett, Benjamin L. Rupert, Leanne Beer, Shipa A. Worlikar, Steven Z. Shi
  • Publication number: 20140261897
    Abstract: Embodiments of the present invention relate generally to methods of treating metal surfaces to enhance adhesion or binding to substrates, and devices formed thereby. In some embodiments of the present invention, methods of achieving improved bonding strength without roughening the topography of a metal surface are provided. The metal surface obtained by this method provides strong bonding to resin layers. The bonding interface between the treated metal and the resin layer exhibits resistance to heat, moisture, and chemicals involved in post-lamination process steps, and therefore can suitably be used in the production of PCB's. Methods according to some embodiments of the present invention are especially useful in the fabrication of high density multilayer PCB's, in particular for PCB's having circuits with line/spacing of equal to and less than 10 microns.
    Type: Application
    Filed: July 6, 2010
    Publication date: September 18, 2014
    Applicant: Atotech Deutschland GmbH
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Publication number: 20140251502
    Abstract: Embodiments of the present invention relate generally to methods of treating metal surfaces to enhance adhesion or binding to substrates, and devices formed thereby. In some embodiments of the present invention, methods of achieving improved bonding strength without roughening the topography of a metal surface are provided. The metal surface obtained by this method provides strong bonding to resin layers. The bonding interface between the treated metal and the resin layer exhibits resistance to heat, moisture, and chemicals involved in post-lamination process steps, and therefore can suitably be used in the production of PCB's. Methods according to some embodiments of the present invention are especially useful in the fabrication of high density multilayer PCB's, in particular for PCB's having circuits with line/spacing of equal to and less than 10 microns.
    Type: Application
    Filed: May 16, 2014
    Publication date: September 11, 2014
    Applicant: Atotech Deutschland GmbH
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Publication number: 20130092866
    Abstract: The invention generally encompasses phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, among other applications. In particular, the invention generally relates to phosphonium ionic liquids, salts, compositions, wherein the compositions exhibit superior combination of thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, and electrochemical stability. The invention further encompasses methods of making such phosphonium ionic liquids, salts, compositions, operational devices and systems comprising the same.
    Type: Application
    Filed: December 5, 2012
    Publication date: April 18, 2013
    Inventors: Benjamin L. Rupert, Levi J. Irwin, Leanne Beer, Shilpa A. Worlikar, Steven Z. Shi
  • Publication number: 20130095351
    Abstract: The invention generally encompasses phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, among other applications. In particular, the invention generally relates to phosphonium ionic liquids, salts, compositions, wherein the compositions exhibit superior combination of thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, and electrochemical stability. The invention further encompasses methods of making such phosphonium ionic liquids, salts, compositions, operational devices and systems comprising the same.
    Type: Application
    Filed: December 5, 2012
    Publication date: April 18, 2013
    Inventors: Wayne L. Gellett, Benjamin L. Rupert, Levi J. Irwin, Leanne Beer, Shilpa A. Worlikar, Steven Z. Shi
  • Publication number: 20130095392
    Abstract: The invention generally encompasses phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, among other applications. In particular, the invention generally relates to phosphonium ionic liquids, salts, compositions, wherein the compositions exhibit superior combination of thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, and electrochemical stability. The invention further encompasses methods of making such phosphonium ionic liquids, salts, compositions, operational devices and systems comprising the same.
    Type: Application
    Filed: December 5, 2012
    Publication date: April 18, 2013
    Inventors: Joon Ho Shin, Benjamin L. Rupert, Levi J. Irwin, Leanne Beer, Shilpa A. Worlikar, Steven Z. Shi
  • Patent number: 8323769
    Abstract: Embodiments of the present invention provide methods of treating a surface of a substrate. In one particular aspect, embodiments of the present invention provide methods of treating a surface of a substrate that promote binding of one or more metal elements to the surface. According to some embodiments of the invention, films are formed on any conducting, semiconductive or non-conductive surface, by thermal reaction of molecules containing reactive groups in an organic solvent or in aqueous solution. The thermal reaction may be produced under a variety of conditions. In another aspect, the present invention provides a printed circuit board, comprising: at least one substrate; a layer of organic molecules attached to the at least one substrate; and a metal layer atop said layer of organic molecules.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: December 4, 2012
    Assignee: Atotech Deutschland GmbH
    Inventors: Werner G. Kuhr, Steven Z. Shi, Jen-Chieh Wei, Zhiming Liu, Lingyun Wei
  • Publication number: 20120125514
    Abstract: Embodiments of the present invention relates generally to the manufacture of printed circuit boards (PCB's) or printed wiring boards (PWB's), and particularly to methods for treating smooth copper surfaces to increase the adhesion between a copper surface and an organic substrate. More particularly, embodiments of the present invention related to methods of achieving improved bonding strength of PCBs without roughening the topography of the copper surface. The bonding interface between the treated copper and the resin layer of the PCB exhibits excellent resistance to heat, moisture, and chemicals involved in post-lamination process steps.
    Type: Application
    Filed: July 6, 2010
    Publication date: May 24, 2012
    Applicant: ZettaCore, Inc.
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Publication number: 20100075427
    Abstract: Embodiments of the present invention provide methods of treating a surface of a substrate. In one embodiment a kit for carrying out the binding of metals to a substrate is provided, comprising: a container comprising a heat-resistant organic molecule derivatized with an attachment group Y and a binding group X, the binding group X promotes binding of metals; and instructional materials teaching coupling the organic molecule to the substrate by heating the molecule and/or the surface to a temperature of at least 25° C.
    Type: Application
    Filed: December 1, 2009
    Publication date: March 25, 2010
    Inventors: Werner G. Kuhr, Steven Z. Shi, Jen-Chieh Wei, Zhiming Liu, Lingyun Wei
  • Publication number: 20100071938
    Abstract: Embodiments of the present invention provide methods of treating a surface of a substrate. In one particular aspect, embodiments of the present invention provide methods of treating a surface of a substrate that promote binding of one or more metal elements to the surface. According to some embodiments of the invention, films are formed on any conducting, semiconductive or non-conductive surface, by thermal reaction of molecules containing reactive groups in an organic solvent or in aqueous solution. The thermal reaction may be produced under a variety of conditions. In another aspect, the present invention provides a printed circuit board, comprising: at least one substrate; a layer of organic molecules attached to the at least one substrate; and a metal layer atop said layer of organic molecules.
    Type: Application
    Filed: December 1, 2009
    Publication date: March 25, 2010
    Inventors: Werner G. Kuhr, Steven Z. Shi, Jen-Chich Wei, Zhiming Liu, Lingyun Wei