Patents by Inventor Stewart Hooper

Stewart Hooper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220384527
    Abstract: There is provided a multi-junction photovoltaic device comprising a first sub-cell disposed over a second sub-cell, the first sub-cell comprising a photoactive region comprising a layer of perovskite material and the second sub-cell comprising a silicon heterojunction (SHJ).
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Anna ROBINSON, Christopher CASE, Daniel KIRK, Edward CROSSLAND, Jim WATTS, Nicola BEAUMONT, Phillip BUTLER, Stewart HOOPER, Benjamin John Langley
  • Publication number: 20180175112
    Abstract: There is provided a multi-junction photovoltaic device (100) comprising a first sub-cell (110) disposed over a second sub-cell (120), the first sub-cell comprising a photoactive region comprising a layer of perovskite material and the second sub-cell comprising a silicon heterojunction (SHJ).
    Type: Application
    Filed: June 10, 2016
    Publication date: June 21, 2018
    Inventors: Anna ROBINSON, Christopher CASE, Daniel KIRK, Edward CROSSLAND, Jim WATTS, Nicola BEAUMONT, Phillip BUTLER, Stewart HOOPER
  • Patent number: 9158178
    Abstract: A laser device is disclosed that provides at least an ultraviolet laser beam and preferably both an ultraviolet laser beam and a visible laser beam. The laser device includes a semiconductor laser device (e.g. a laser diode) to generate visible laser light which is coupled into a frequency doubling crystal taking the form of a single crystal thin film frequency-doubling waveguide structure. The single crystal thin film frequency-doubling waveguide converts a portion of the visible light emitted by the laser diode into ultraviolet light. Both visible and ultraviolet laser light is emitted from the waveguide. As an example, the single crystal thin film frequency-doubling frequency doubling waveguide includes a frequency doubling crystal region composed of ?-BaB2O4 (?-BBO), a cladding region composed of materials that are transparent or nearly transparent at the wavelength of the ultraviolet laser light beam and a supporting substrate composed of any material.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 13, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tim Smeeton, Stewart Hooper, Edward Boardman, Robin Mark Cole
  • Publication number: 20140251949
    Abstract: A laser device is disclosed that provides at least an ultraviolet laser beam and preferably both an ultraviolet laser beam and a visible laser beam. The laser device includes a semiconductor laser device (e.g. a laser diode) to generate visible laser light which is coupled into a frequency doubling crystal taking the form of a single crystal thin film frequency-doubling waveguide structure. The single crystal thin film frequency-doubling waveguide converts a portion of the visible light emitted by the laser diode into ultraviolet light. Both visible and ultraviolet laser light is emitted from the waveguide. As an example, the single crystal thin film frequency-doubling frequency doubling waveguide includes a frequency doubling crystal region composed of ?-BaB2O4 (?-BBO), a cladding region composed of materials that are transparent or nearly transparent at the wavelength of the ultraviolet laser light beam and a supporting substrate composed of any material.
    Type: Application
    Filed: April 24, 2014
    Publication date: September 11, 2014
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Tim SMEETON, Stewart HOOPER, Edward BOARDMAN, Robin Mark COLE
  • Patent number: 8743922
    Abstract: A laser device is disclosed that provides at least an ultraviolet laser beam and preferably both an ultraviolet laser beam and a visible laser beam. The laser device includes a semiconductor laser device (e.g. a laser diode) to generate visible laser light which is coupled into a frequency doubling crystal taking the form of a single crystal thin film frequency-doubling waveguide structure. The single crystal thin film frequency-doubling waveguide converts a portion of the visible light emitted by the laser diode into ultraviolet light. Both visible and ultraviolet laser light is emitted from the waveguide. As an example, the single crystal thin film frequency-doubling frequency doubling waveguide includes a frequency doubling crystal region composed of ?-BaB2O4 (?-BBO), a cladding region composed of materials that are transparent or nearly transparent at the wavelength of the ultraviolet laser light beam and a supporting substrate composed of any material.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: June 3, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tim Smeeton, Stewart Hooper, Edward Andrew Boardman, Robin Mark Cole
  • Publication number: 20130100977
    Abstract: A laser device is disclosed that provides at least an ultraviolet laser beam and preferably both an ultraviolet laser beam and a visible laser beam. The laser device includes a semiconductor laser device (e.g. a laser diode) to generate visible laser light which is coupled into a frequency doubling crystal taking the form of a single crystal thin film frequency-doubling waveguide structure. The single crystal thin film frequency-doubling waveguide converts a portion of the visible light emitted by the laser diode into ultraviolet light. Both visible and ultraviolet laser light is emitted from the waveguide. As an example, the single crystal thin film frequency-doubling frequency doubling waveguide includes a frequency doubling crystal region composed of ?-BaB2O4 (?-BBO), a cladding region composed of materials that are transparent or nearly transparent at the wavelength of the ultraviolet laser light beam and a supporting substrate composed of any material.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Tim SMEETON, Stewart HOOPER, Edward Andrew BOARDMAN, Robin Mark COLE
  • Patent number: 7867799
    Abstract: A method of fabricating a continuous wave semiconductor laser diode in the (Al,Ga,In)N materials system comprises: growing, in sequence, a first cladding region (4), a first optical guiding region (5), an active region (6), a second optical guiding region (7) and a second cladding region (8). Each of the first cladding region (4), the first optical guiding region (5), the active region (6), the second optical guiding region (7) and the second cladding region (8) is deposited by molecular beam epitaxy.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: January 11, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Stewart Hooper, Valerie Bousquet, Katherine L. Johnson, Matthias Kauer, Jonathan Heffernan
  • Patent number: 7569862
    Abstract: A method of manufacturing a semiconductor light-emitting device comprises selectively etching a semiconductor layer structure (16) fabricated in a nitride materials system and including an aluminum-containing cladding region or an aluminum-containing optical guiding region (5). The etching step forms a mesa (17), and also exposes one or more portions of the aluminum-containing cladding region or the aluminum-containing optical guiding region (5). The or each exposed portion of the aluminum-containing cladding region or the aluminum-containing optical guiding region (5) is then oxidized to form a current blocking layer (18) laterally adjacent to and extending laterally from the mesa. When an electrically conductive contact layer (11) is deposited, the current blocking layer (18) will prevent the contact layer (11) from making direct contact with the buffer layer (3).
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: August 4, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Katherine L. Johnson, Stewart Hooper, Valerie Bousquet, Matthias Kauer, Jonathan Heffernan
  • Patent number: 7375367
    Abstract: A semiconductor light-emitting device fabricated in a nitride material system has an active region disposed over a substrate. The active region comprises a first aluminium-containing layer forming the lowermost layer of the active region, a second aluminium-containing layer forming the uppermost layer of the active region, and at least one InGaN quantum well layer disposed between the first aluminium-containing layer and the second aluminum-containing layer. The aluminium-containing layers provide improved carrier confinement in the active region, and so increase the output optical power of the device.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: May 20, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Stewart Hooper, Valerie Bousquet, Katherine L. Johnson, Jonathan Heffernan
  • Publication number: 20080014667
    Abstract: A method of modifying the optical properties of a processed nitride semiconductor light-emitting device initially comprises disposing the processed nitride semiconductor light-emitting device in a vacuum chamber. One or more nitride semiconductor layers are then grown by molecular beam epitaxy thereby to modify the optical properties of the processed light-emitting device. Activated nitrogen, for example from a plasma source, is supplied to the vacuum chamber during growth of the nitride semiconductor layer(s). The use of activated nitrogen reduces the growth temperature required for the growth of the nitride semiconductor layer(s), as the need for thermal activation of a nitrogen species is eliminated. Moreover, use of a growth method such as, for example, plasma-assisted MBE to grow the nitride semiconductor layer(s) allows much more precise control of their thickness and composition.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 17, 2008
    Inventors: Stewart HOOPER, Matthias Kauer, Jonathan Heffernan, Joanna Alderman, Jennifer Barnes, Valerie Bousquet, Takeshi Kamikawa, Yoshiyuki Takahira
  • Publication number: 20070263691
    Abstract: A semiconductor device comprises an active region (4), a cladding layer (5,7), and a saturable absorbing layer (6) disposed within the cladding layer. The saturable absorbing layer comprises at least one portion (11a) that is absorbing for light emitted by the active region and comprises at least portion (11b) that is not absorbing for light emitted by the active region. The fabrication method of the invention enables the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) to produced after the device structure has been fabricated. This allows the degree of overlap between the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) and the optical mode of the laser to be altered after the device has been grown.
    Type: Application
    Filed: July 24, 2007
    Publication date: November 15, 2007
    Inventors: Rakesh Roshan, Brendan Poole, Stewart Hooper, Jonathan Heffernan
  • Patent number: 7276391
    Abstract: A method of fabricating the active region of a semiconductor light-emitting device, in which the active region comprises a plurality of barrier layers (11,13,15,17) with each pair of barrier layers being separated by a quantum well layer (12,14,16), comprises annealing each barrier layer (11,13,15,17) separately. Each barrier layer (11,13,15,17) is annealed once it has been grown, and before a layer is grown over the barrier layer. A device grown by the method of the invention has a significantly higher optical power output than a device made by a convention fabrication process having a single annealing step.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: October 2, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Stewart Hooper, Valerie Bousquet, Katherine L. Johnson, Jonathan Heffernan
  • Publication number: 20070138489
    Abstract: A semiconductor light-emitting device is fabricated in a nitride materials system and has an active region comprising two or more quantum well layers. Each quantum well layer is separated from a neighbouring quantum well layer by a respective barrier layer. The or each barrier layer has a thickness that is at least 13 times as great as the thickness of any one of the quantum well layers. This increases the output power of the device.
    Type: Application
    Filed: November 21, 2006
    Publication date: June 21, 2007
    Inventors: Stewart Hooper, Valerie Bousquet
  • Publication number: 20060244002
    Abstract: A method of manufacturing a nitride semiconductor device comprises the steps of: growing an InxGa1-xN (0?x?1) layer, and growing an aluminium-containing nitride semiconductor layer over the InxGa1-xN layer at a growth temperature of at least 500° C. so as to form an electron gas region at an interface between the InxGa1-xN layer and the nitride semiconductor layer. The nitride semiconductor layer is then annealed at a temperature of at least 800° C. The method of the invention can provide an electron gas having a sheet carrier density of 6×1013 cm?2 or greater. An electron gas with such a high sheet carrier concentration can be obtained with an aluminium-containing nitride semiconductor layer having a relatively low aluminium concentration, such as an aluminium mole fraction of 0.3 or below, and without the need to dope the aluminium-containing nitride semiconductor layer or the InxGa1-xN layer.
    Type: Application
    Filed: April 27, 2006
    Publication date: November 2, 2006
    Inventors: Stewart Hooper, Valerie Bousquet, Jonathan Heffernan
  • Publication number: 20060237740
    Abstract: A method of growing an AlGaN semiconductor layer structure by Molecular Beam Epitaxy comprises supplying ammonia, gallium and aluminium to a growth chamber thereby to grow a first (Al,Ga)N layer by MBE over a substrate disposed in the growth chamber. The first (Al,Ga)N layer has a non-zero aluminium mole fraction. Ammonia is supplied at a beam equivalent pressure of at least 1 10?4 mbar, gallium is supplied at a beam equivalent pressure of at least 1 10?8 mbar and aluminium is supplied at a beam equivalent pressure of at least 1 10?8 mbar during the growth step. Once the first (Al,Ga)N layer has been grown, varying the supply rate of gallium and/or aluminium enables a second (Al,Ga)N layer, having a different aluminium mole fraction from the first (Al,Ga)N layer to be grown by MBE over the first (Al,Ga)N layer. This process may be repeated to grown an (Al,Ga)N multilayer structure.
    Type: Application
    Filed: August 18, 2003
    Publication date: October 26, 2006
    Inventors: Valerie Bousquet, Stewart Hooper, Jennifer Barnes, Katherine Johnson, Jonathan Heffernan
  • Publication number: 20060128122
    Abstract: A method of MBE growth of a semiconductor layer structure comprises growing a first (Al,Ga)N layer (step 13) over a substrate at the first substrate temperature (T1) using ammonia as the nitrogen precursor. The substrate is then cooled (step 14) to a second-substrate temperature (T2) which is lower than the first substrate temperature. An (In,Ga)N quantum well structure is then grown (step 15) over the first (Al,Ga)N layer by MBE using ammonia as the nitrogen precursor. The supply of ammonia to the substrate is maintained continuously during the first growth step, the cooling step, and the second growth step. After completion of the growth of the (In,Ga)N quantum well structure, the substrate may be heated to a third temperature (T3) which is greater than the second substrate temperature (T2). A second (Al,Ga)N layer is then grown over the (In,Ga)N quantum well structure (step 17).
    Type: Application
    Filed: August 18, 2003
    Publication date: June 15, 2006
    Inventors: Valerie Bousquet, Stewart Hooper, Jennifer Barnes, Jonathan Heffernan
  • Publication number: 20060121637
    Abstract: A method of growing a p-type nitride semiconductor material by molecular beam epitaxy (MBE) uses bis(cyclopentadienyl)magnesium (Cp2Mg) as the source of magnesium dopant atoms. Ammonia gas is used as the nitrogen precursor for the MBE growth process. To grow p-type GaN, for example, by the method of the invention, gallium, ammonia and Cp2Mg are supplied to an MBE growth chamber; to grow p-type AlGaN, aluminium is additionally supplied to the growth chamber. The growth process of the invention produces a p-type carrier concentration, as measured by room temperature Hall effect measurements, of up to 2 1017 cm-3, without the need for any post-growth step of activating the dopant atoms.
    Type: Application
    Filed: November 27, 2003
    Publication date: June 8, 2006
    Inventors: Stewart Hooper, Katherine Johnson, Valerie Bousquet, Jonathan Heffernan
  • Publication number: 20050249253
    Abstract: A semiconductor light-emitting device and a method of manufacture thereof A method of manufacturing a semiconductor light-emitting device comprises selectively etching a semiconductor layer structure (16) fabricated in a nitride materials system and including an aluminium-containing cladding region or an aluminium-containing optical guiding region (5). The etching step forms a mesa (17), and also exposes one or more portions of the aluminium-containing cladding region or the aluminium-containing optical guiding region (5). The or each exposed portion of the aluminium-containing cladding region or the aluminium-containing optical guiding region (5) Is then oxidised to form a current blocking layer (18) laterally adjacent to and extending laterally from the mesa. When an electrically conductive contact layer (11) is deposited, the current blocking layer (18) will prevent the contact layer (11) from making direct contact with the buffer layer (3).
    Type: Application
    Filed: January 7, 2005
    Publication date: November 10, 2005
    Inventors: Katherine Johnson, Stewart Hooper, Valerie Bousquet, Matthias Kauer, Jonathan Heffernan
  • Publication number: 20050227404
    Abstract: A method of manufacturing a semiconductor light-emitting device is provided. The method includes the step of depositing an electrically conductive material on one or more selected portions of the surface of a semiconductor wafer including a substrate and a layer structure, the layer structure having at least a first semiconductor layer of a first conductivity type and a second semiconductor conductivity layer of a second conductivity type different from the first conductivity type, the first layer being between the second layer and the substrate, such that the electrically conductive material forms a contact to the first semiconductor layer. The method further includes the step of dicing the wafer to form a plurality of light-emitting devices, each light-emitting device having a respective part of the electrically conductive material.
    Type: Application
    Filed: March 17, 2005
    Publication date: October 13, 2005
    Inventors: Katherine Johnson, Stewart Hooper, Valerie Bousquet, Matthias Kauer, Jonathan Heffernan
  • Patent number: D968317
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: November 1, 2022
    Assignee: Oxford Photovoltaics Limited
    Inventor: Stewart Hooper