Patents by Inventor Stian SOLBERG

Stian SOLBERG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885917
    Abstract: Estimation and imaging of linear and nonlinear propagation and scattering parameters in a material object where the material parameters for wave propagation and scattering has a nonlinear dependence on the wave field amplitude. The methods transmit at least two pulse complexes composed of co-propagating high frequency (HF) and low frequency (LF) pulses along at least one LF and HF transmit beam axis, where said HF pulse propagates close to the crest or trough of the LF pulse along at least one HF transmit beam, and where one of the amplitude and polarity of the LF pulse varies between at least two transmitted pulse complexes. At least one HF receive beam crosses the HF transmit beam at an angle, to provide at least two HF cross-beam receive signals from at least two transmitted pulse complexes with different LF pulses.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: January 30, 2024
    Assignee: SURF TECHNOLOGY AS
    Inventors: Bjorn A. J. Angelsen, Johannes Kvam, Stian Solberg
  • Patent number: 11796659
    Abstract: Methods and instrumentation for pulse scattering estimation and imaging of scattering parameters in a material object by transmitting a pulse along a transmit beam and directing a receive beam that crosses at least one transmit beam at an angle <45 deg. The receive beam is at least in an azimuth direction at the transmit beam, and records scattered receive signal from the overlap region. A receive interval of the receive signal is gated for further processing to form measurement and/or image signals from cross-beam observation cells.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: October 24, 2023
    Assignee: SURF TECHNOLOGY AS
    Inventors: Bjørn A J Angelsen, Stian Solberg
  • Patent number: 11672510
    Abstract: Estimation of vibration amplitude of intra-capillary micro-bubbles driven to vibrate with an incident ultrasound wave with amplitude and frequency to adjust the drive amplitude of the incident wave to obtain specified vibration amplitude of extra-capillary tissue. Estimation uses transmission of M groups of pulse complexes having low frequency pulse (LF) at bubble drive frequency, and high frequency (HF) pulse with angular frequency ?H>˜5?L, and pulse duration shorter than ?/4?L along HF beam. The phase between HF and LF pulses is ?Ltm for each group, where tm varies between the groups. Within each group, LF pulse varies between pulse complexes in amplitude and/or, where the LF pulse can be zero for a pulse complex, and LF pulse is different from zero for pulse complex within each group. HF receive signals are processed to obtain a parameter relating to bubble vibration amplitude when the HF pulse hits bubble.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: June 13, 2023
    Assignee: SURF TECHNOLOGY AS
    Inventors: Seyednaseh Amini, Bjorn Angelsen, Stian Solberg, Yamen Zaza
  • Publication number: 20230112529
    Abstract: Estimation of vibration amplitude of intra-capillary micro-bubbles driven to vibrate with an incident ultrasound wave with amplitude and frequency to adjust the drive amplitude of the incident wave to obtain specified vibration amplitude of extra-capillary tissue. Estimation uses transmission of M groups of pulse complexes having low frequency pulse (LF) at bubble drive frequency, and high frequency (HF) pulse with angular frequency ?H> ~ 5 ?L, and pulse duration shorter than ?/4?L along HF beam. The phase between HF and LF pulses is ?Ltm for each group, where tm varies between the groups. Within each group, LF pulse varies between pulse complexes in amplitude and/or, where the LF pulse can be zero for a pulse complex, and LF pulse is different from zero for pulse complex within each group. HF receive signals are processed to obtain a parameter relating to bubble vibration amplitude when the HF pulse hits bubble.
    Type: Application
    Filed: September 26, 2022
    Publication date: April 13, 2023
    Inventors: Seyednaseh AMINI, BJORN ANGELSEN, STIAN SOLBERG, YAMEN ZAZA
  • Publication number: 20220105363
    Abstract: Increasing the immune response to a given cancer in a patient through increasing lymphatic flow out of the cancer region, following a primary action of the cancer that loads professional antigen-presenting cells/dendritic cells (APCs/DCs) with tumor-associated antigen (TAA) from the tumor into the interstitial fluid of the cancer region. Example primary actions are radio-therapy, both stereotactic and brachytherapy using implanted seeds, proton-therapy, and chemical- or radio-pharmaceutical therapy. Intra-capillary micro-bubbles in the tumor are brought to vibrate with incident ultrasound of appropriate frequency and amplitude, producing vibrations in the extra capillary tissue that produces an outward acoustic radiation force and micro shear waves in the tissue that increases transport of the interstitial fluid.
    Type: Application
    Filed: October 6, 2021
    Publication date: April 7, 2022
    Inventors: Seyednaseh AMINI, Bjorn Angelsen, Wolfgang Lilleby, Stian Solberg
  • Patent number: 11275006
    Abstract: Methods and instrumentation for estimation of nonlinear bulk elasticity parameters (NEP) of a material through measuring nonlinear propagation delays (NPDs) at a set of multiple range cells along at least one transmit beam axis, and adapting said NEPs to minimize a functional of the NEPs. The method calculates a distance between a model of the NPDs with the NEPs as input and the measured NPDs, and estimated NEPs are obtained at the minimum of the functional. The NPDs are measured by transmitting at least two pulse complexes comprising a low frequency (LF) and a high frequency (HF) pulse with differences in the LF pulse, along at least one common LF and HF transmit beam axes, and gating out HF receive signals from a multitude of depth ranges along said at least one HF transmit beam axis, and comparing the HF receive signals from two pulse complexes with difference in the LF pulse for each depth range.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 15, 2022
    Assignee: SURF Technology AS
    Inventors: Bjorn A. J. Angelsen, Johannes Kvam, Stian Solberg
  • Publication number: 20210286059
    Abstract: Estimation and imaging of linear and nonlinear propagation and scattering parameters in a material object where the material parameters for wave propagation and scattering has a nonlinear dependence on the wave field amplitude. The methods transmit at least two pulse complexes composed of co-propagating high frequency (HF) and low frequency (LF) pulses along at least one LF and HF transmit beam axis, where said HF pulse propagates close to the crest or trough of the LF pulse along at least one HF transmit beam, and where one of the amplitude and polarity of the LF pulse varies between at least two transmitted pulse complexes. At least one HF receive beam crosses the HF transmit beam at an angle, to provide at least two HF cross-beam receive signals from at least two transmitted pulse complexes with different LF pulses.
    Type: Application
    Filed: December 18, 2020
    Publication date: September 16, 2021
    Inventors: Bjorn A. J. ANGELSEN, Johannes Kvam, Stian Solberg
  • Publication number: 20200405268
    Abstract: Methods and instrumentation for pulse scattering estimation and imaging of scattering parameters in a material object by transmitting a pulse along a transmit beam and directing a receive beam that crosses at least one transmit beam at an angle <45 deg. The receive beam is at least in an azimuth direction at the transmit beam, and records scattered receive signal from the overlap region. A receive interval of the receive signal is gated for further processing to form measurement and/or image signals from cross-beam observation cells.
    Type: Application
    Filed: June 24, 2020
    Publication date: December 31, 2020
    Inventors: Bjørn A. J. ANGELSEN, Stian SOLBERG
  • Publication number: 20200191690
    Abstract: Methods and instrumentation for estimation of nonlinear bulk elasticity parameters (NEP) of a material through measuring nonlinear propagation delays (NPDs) at a set of multiple range cells along at least one transmit beam axis, and adapting said NEPs to minimize a functional of the NEPs. The method calculates a distance between a model of the NPDs with the NEPs as input and the measured NPDs, and estimated NEPs are obtained at the minimum of the functional. The NPDs are measured by transmitting at least two pulse complexes comprising a low frequency (LF) and a high frequency (HF) pulse with differences in the LF pulse, along at least one common LF and HF transmit beam axes, and gating out HF receive signals from a multitude of depth ranges along said at least one HF transmit beam axis, and comparing the HF receive signals from two pulse complexes with difference in the LF pulse for each depth range.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 18, 2020
    Inventors: Bjorn A.J. ANGELSEN, Johannes Kvam, Stian Solberg
  • Patent number: 10502348
    Abstract: A riser connector assembly includes a first connector assembly portion with first locking members, a second connector assembly portion with second locking members, and a locking device with third and fourth locking members. The locking device is rotatably connected to the first connector assembly portion. The locking device rotates between a first position where each of the locking members are interlocked, a second position where the first and third locking members are interlocked, and the second and fourth locking members are not interlocked, and a third position where none of the locking members are interlocked, so that the locking device is removable. The first and third locking members selectively/releasably interlock via a relative rotation between the first connector assembly portion and the locking device. The second and fourth locking members selectively/releasably interlock via a relative rotation between the second connector assembly portion and the locking device.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: December 10, 2019
    Assignee: MARITIME PROMECO AS
    Inventors: Boerge Bjoerneklett, Per Martin Erik Hansson, Stian Solberg
  • Publication number: 20160258562
    Abstract: A riser connector assembly includes a first connector assembly portion comprising first locking members, a second connector assembly portion comprising second locking members, and a locking device comprising third and fourth locking members. The locking device is rotatably connected to the first connector assembly portion. The locking device is configured to rotate between a first position where each of the locking members are interlocked, a second position where the first and third locking members are interlocked, and the second and fourth locking members are not interlocked, and a third position where none of the locking members are interlocked, so that the locking device is removable. The first and third locking members selectively/releasably interlock via a relative rotation between the first connector assembly portion and the locking device. The second and fourth locking members selectively/releasably interlock via a relative rotation between the second connector assembly portion and the locking device.
    Type: Application
    Filed: November 14, 2014
    Publication date: September 8, 2016
    Applicant: MARITIME PROMECO AS
    Inventors: Boerge BJOERNEKLETT, Per Martin Erik HANSSON, Stian SOLBERG