Patents by Inventor Stijn Put

Stijn Put has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11777082
    Abstract: A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 ?m, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 3, 2023
    Assignees: Showa Denko K.K., Umicore
    Inventors: Yasunari Otsuka, Nobuaki Ishii, Nicolas Marx, Stijn Put
  • Publication number: 20230108811
    Abstract: A silicon-based powder suitable for use in a negative electrode of a battery. The silicon-based powder comprises silicon-based particles and non-silicon-based particles. The silicon-based particles have a number-based particle size distribution with a dS50 value, being at most 200 nm. The silicon-based powder has an oxygen content of at most 20% by weight and comprises one or more elements M from a group of metals that have a Standard Gibbs free energy of formation at a temperature T of the oxide from their zerovalent state which is lower than the Standard Gibbs free energy of formation at the same temperature T of SiO2 from zerovalent silicon. The temperature T is equal to or higher than 573K and lower than 1373K. The content of said one or more elements M in the silicon-based powder is at least 0.10% of the content of Si by weight in said silicon-based powder.
    Type: Application
    Filed: February 9, 2021
    Publication date: April 6, 2023
    Inventors: Boaz MOEREMANS, Nicolas MARX, Jean-Sébastien BRIDEL, Stijn PUT
  • Patent number: 11588148
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 21, 2023
    Assignees: Umicore, Showa Denko K.K.
    Inventors: Stijn Put, Dirk Van Genechten, Jan Gilleir, Nicolas Marx, Arihiro Muto, Nobuaki Ishii, Masataka Takeuchi
  • Patent number: 11581529
    Abstract: A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0<x<2, the surface layer having an average thickness between 0.5 nm and 10 nm, and wherein the powder has a total oxygen content equal or less than 3% by weight at room temperature. The method for making the powder comprises a step where a Si precursor is vaporized in a gas stream at high temperature, after which the gas stream is quenched to obtain Si particles, and the Si particles are quenched at low temperature in an oxygen containing gas.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: February 14, 2023
    Assignee: Umicore
    Inventors: Jean Scoyer, Stijn Put, Daniël Nelis, Kris Driesen
  • Patent number: 11502285
    Abstract: A rechargeable electrochemical cell comprising a negative electrode and a positive electrode is described. The positive electrode comprises a product having as overall formula Lip(NixMnyCozMmAlnAa)O2±b, wherein M signifies one or more elements from the group Mg, Ti, Cr, V and Fe, wherein A signifies one or more elements from the group F, C, Cl, S, Zr, Ba, Y, Ca, B, Sn, Sb, Na and Zn, and wherein 0.9<(x+y+z+m+n+a)<1.1, b<0.02, 0.9<p<1.110, 0.30<x<0.95, (y+z)?0.09, 0?m?0.05, 0?a?0.05, and 0?n?0.15. The negative electrode comprises composite particles, wherein the composite particles comprise silicon-based domains in a matrix material. The individual silicon-based domains are either free silicon-based domains that are not or not completely embedded in the matrix or are fully embedded silicon-based domains that are completely surrounded by the matrix material.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: November 15, 2022
    Assignees: UMICORE, UMICORE KOREA LTD.
    Inventors: Jean-Sébastien Bridel, Stijn Put, Dongjoon Ihm, Daniel Nelis
  • Patent number: 11502290
    Abstract: A composite powder for use in the negative electrode of a battery, whereby the composite powder comprises composite particles, whereby the composite particles comprise a matrix material and silicon, whereby the composite particles have a particle size distribution having a d10 and a d90, whereby over at least part of the size range from d10 to d90 the composite particles have a size-dependent silicon content. Preferably a finer fraction of the composite powder has an average particle size D1 and a silicon content S1 and a coarser fraction of the composite powder has an average particle size D2 and a silicon content S2, whereby a size dependence factor F is defined as follows F=(S2?S1)/(D2?D1), whereby the absolute value of the size dependence factor F is at least 0.04 wt % silicon/?m.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 15, 2022
    Assignee: UMICORE
    Inventors: Nicolas Marx, Stijn Put, Jean-Sébastien Bridel
  • Publication number: 20220352493
    Abstract: A powder for use in a negative electrode of a battery, said powder comprising particles, wherein the particles comprise a carbonaceous matrix material and silicon-based domains dispersed in the carbonaceous matrix material, wherein the particles further comprise pores wherein at least 1000 cross-sections of pores comprised in a cross-section of the powder satisfy optimized conditions of size and size distribution, allowing the battery containing such a powder to achieve a superior cycle life and a production method of such a powder.
    Type: Application
    Filed: October 5, 2020
    Publication date: November 3, 2022
    Inventors: Boaz MOEREMANS, Kun FENG, Michal TULODZIECKI, Jean-Sébastien BRIDEL, Nicolas MARX, Stijn PUT
  • Patent number: 11450849
    Abstract: An active material powder for use in a negative electrode of a battery, wherein the active material powder comprises active material particles, wherein the active material particles comprise silicon-based particles, wherein when said active material powder is crossed by a plane, then at least 65% of the discrete cross-sections of the silicon-based particles included in that plane, satisfy optimized conditions of shape and size, allowing the battery containing such an active material powder to achieve a superior cycle life and a production method of such an active material powder.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: September 20, 2022
    Assignee: UMICORE
    Inventors: Nicolas Marx, Stijn Put, Jean-Sébastien Bridel, Boaz Moeremans
  • Publication number: 20220209223
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Application
    Filed: February 16, 2022
    Publication date: June 30, 2022
    Inventors: Stijn PUT, Dirk VAN GENECHTEN, Jan GILLEIR, Nicolas MARX, Arihiro MUTO, Nobuaki ISHII, Masataka TAKEUCHI
  • Patent number: 11329275
    Abstract: Composite powder for use as electrochemically active material in an anode of a lithium ion battery, whereby the particles of the composite powder comprise a carbon-based matrix material and silicon particles embedded in this matrix material, whereby the silicon particles and the matrix material have an interface, characterized in that at this interface there are Si—C chemical bonds present.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 10, 2022
    Assignee: UMICORE
    Inventors: Stijn Put, Dirk Van Genechten, Jean-Sébastien Bridel
  • Patent number: 11031587
    Abstract: A negative electrode material for a lithium ion battery, including silicon-containing particles, artificial graphite particles and a carbonaceous material, wherein at least part of the silicon-containing particles, the artificial graphite particles and the carbonaceous material form composite particles; wherein the silicon-containing particles are silicon particles having a SiOx (0<x?2) layer on the particle surface, having an oxygen content of 1.0 mass % or more and 18.0 mass % or less, and mainly containing particles having a primary particle diameter of 200 nm or less; wherein the artificial graphite particles are non-flaky artificial graphite particles and have a 50% particle diameter in a volume-based cumulative particle size distribution, D50, of 1.0 ?m or more and 15.0 ?m or less. Also disclosed is a lithium-ion battery including a negative electrode using the negative electrode material.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: June 8, 2021
    Assignees: SHOWA DENKO K. K., UMICORE
    Inventors: Nobuaki Ishii, Arihiro Muto, Yasunari Otsuka, Masataka Takeuchi, Dirk Van Genechten, Stijn Put
  • Publication number: 20210159481
    Abstract: A rechargeable electrochemical cell comprising a negative electrode and a positive electrode is described. The positive electrode comprises a product having as overall formula Lip(NixMnyCozMmAlnAa)O2±b, wherein M signifies one or more elements from the group Mg, Ti, Cr, V and Fe, wherein A signifies one or more elements from the group F, C, Cl, S, Zr, Ba, Y, Ca, B, Sn, Sb, Na and Zn, and wherein 0.9<(x+y+z+m+n+a)<1.1, b<0.02, 0.9<p<1.110, 0.30<x<0.95, (y+z)?0.09, 0?m?0.05, 0?a?0.05, and 0?n?0.15. The negative electrode comprises composite particles, wherein the composite particles comprise silicon-based domains in a matrix material. The individual silicon-based domains are either free silicon-based domains that are not or not completely embedded in the matrix or are fully embedded silicon-based domains that are completely surrounded by the matrix material.
    Type: Application
    Filed: September 11, 2017
    Publication date: May 27, 2021
    Inventors: Jean-Sébastien BRIDEL, Stijn PUT, Dongjoon IHM, Daniël NELIS
  • Publication number: 20210083271
    Abstract: A composite powder for use in the negative electrode of a battery, whereby the composite powder comprises composite particles, whereby the composite particles comprise a matrix material and silicon, whereby the composite particles have a particle size distribution having a d10 and a d90, whereby over at least part of the size range from d10 to d90 the composite particles have a size-dependent silicon content. Preferably a finer fraction of the composite powder has an average particle size D1 and a silicon content S1 and a coarser fraction of the composite powder has an average particle size D2 and a silicon content S2, whereby a size dependence factor F is defined as follows F=(S2?S1)/(D2?D1), whereby the absolute value of the size dependence factor F is at least 0.04 wt % silicon/?m.
    Type: Application
    Filed: December 21, 2018
    Publication date: March 18, 2021
    Inventors: Nicolas MARX, Stijn PUT, Jean-Sébastien BRIDEL
  • Publication number: 20210036315
    Abstract: Silicon-based powder for use in the negative electrode of a battery, whereby the silicon-based powder comprises silicon-based particles, whereby the silicon-based particles have a number-based particle size distribution having a d50, whereby the particle size of a particle is considered to be the largest dimension of said particle, whereby less than 8.0% of the particles have a size which is larger than twice the d50. Such a silicon based powder may be embedded in a matrix to form an active material powder. Preferably d50<150 nm and d10>10 nm. The cycle efficiency of a negative electrode of a battery, made using such a powder, is much improved.
    Type: Application
    Filed: February 5, 2019
    Publication date: February 4, 2021
    Inventors: Stijn PUT, Nicolas MARX, Jan GILLEIR, Daniël NELIS
  • Patent number: 10847782
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: November 24, 2020
    Assignee: Umicore
    Inventors: Stijn Put, Dirk Van Genechten, Jan Gilleir, Nicolas Marx
  • Publication number: 20200321609
    Abstract: A lithium ion battery comprising a negative electrode and an electrolyte, whereby the negative electrode comprises composite particles, whereby the composite particles comprise silicon-based domains, whereby the composite particles comprise a matrix material in which the silicon-based domains are embedded, whereby the composite particles and the electrolyte have an interface, whereby at this interface there is a SEI layer, characterized in that the SEI layer comprises one or more compounds having carbon-carbon chemical bonds and the SEI layer comprises one or more compounds having carbon-oxygen chemical bonds, whereby a ratio, defined as the area of a first peak divided by the area of a second peak, is at least 1.30, whereby the first peak and second peak are peaks in an X-ray photoelectron spectroscopy measurement of the SEI, whereby the first peak represents C—C chemical bonds and whereby the second peak represents C—O chemical bonds.
    Type: Application
    Filed: September 12, 2018
    Publication date: October 8, 2020
    Inventors: Stijn PUT, Daniël NELIS, Jean-Sébastien BRIDEL, Jeong-Rae KIM
  • Publication number: 20200295359
    Abstract: A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 ?m, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
    Type: Application
    Filed: September 18, 2018
    Publication date: September 17, 2020
    Applicants: SHOWA DENKO K.K., UMICORE
    Inventors: Yasunari OTSUKA, Nobuaki ISHII, Nicolas MARX, Stijn PUT
  • Publication number: 20200266429
    Abstract: A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0<x<2, the surface layer having an average thickness between 0.5 nm and 10 nm, and wherein the powder has a total oxygen content equal or less than 3% by weight at room temperature. The method for making the powder comprises a step where a Si precursor is vaporized in a gas stream at high temperature, after which the gas stream is quenched to obtain Si particles, and the Si particles are quenched at low temperature in an oxygen containing gas.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Inventors: Jean Scoyer, Stijn Put, Daniël Nelis, Kris Driesen
  • Patent number: 10693135
    Abstract: A production method for a composite of fine particles (A) and carbon particles (B), including the steps of: mixing fine particles (A) formed of a substance comprising at least one kind of Si, Sn, Al, Ge and In; and molten pitch, to obtain a mixture (1); pulverizing the mixture (1) to obtain a pulverized product (2a); dry-mixing the pulverized product (2a) and carbon particles (B) to obtain a mixture (3a); and firing the mixture (3a), followed by pulverization; or including the steps of: adding carbon particles (B) to the mixture (1), followed by dry mixing and pulverizing, to obtain a pulverized product (2b); and firing the pulverized product (2b), followed by pulverization.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: June 23, 2020
    Assignees: SHOWA DENKO K.K., UMICORE
    Inventors: Arihiro Mutoh, Hirokazu Murata, Masataka Takeuchi, Jan Gilleir, Kris Driesen, Stijn Put
  • Patent number: 10637052
    Abstract: Composite powder for use in an anode of a lithium ion battery, whereby the particles of the composite powder comprise a carbon matrix material and silicon particles embedded in this matrix material, characterized in that the composite powder further comprises silicon carbide.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: April 28, 2020
    Assignee: Umicore
    Inventors: Stijn Put, Dirk Van Genechten, Nicolas Marx