Patents by Inventor Storrs T. Hoen

Storrs T. Hoen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068135
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Kyle L. Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 11913143
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 27, 2024
    Assignee: Apple Inc.
    Inventors: Kyle L Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Patent number: 11747950
    Abstract: A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: September 5, 2023
    Assignee: Apple Inc.
    Inventors: Jonah A. Harley, Peter W. Richards, Brian Q. Huppi, Omar Sze Leung, Dhaval N. Shah, Martin P. Grunthaner, Steven P. Hotelling, Miguel C. Christophy, Vivek Katiyar, Tang Yew Tan, Christopher J. Butler, Erik G. De Jong, Ming Sartee, Rui Qiao, Steven J. Martisauskas, Storrs T. Hoen, Richard Hung Minh Dinh, Lee E. Hooton, Ian A. Spraggs, Sawyer I. Cohen, David A. Pakula
  • Publication number: 20230061553
    Abstract: One or more electrical components may be incorporated into a piece of fabric. The electrical component may include an internal portion that is located inside of the fabric, an external portion that is located on an exterior surface of the fabric, and protrusions that extend through the fabric to electrically and/or mechanically couple the internal and external portions of the electrical component. The internal portion of the component may be inserted into the fabric during formation of the fabric. The external portion of the component may be coupled to the internal portion after the fabric is formed by inserting the protrusions on the internal portion into recesses in the external portion. The external portion of the component may contain skin-facing and/or viewer-facing input-output devices, while the internal portion may contain circuitry that electrically communicates with the input-output devices in the external portion.
    Type: Application
    Filed: July 11, 2022
    Publication date: March 2, 2023
    Inventors: Yue Chen, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg
  • Patent number: 11262797
    Abstract: A system may include a wearable electronic device that gathers force input. The device may transmit force measurement information and other input to external equipment such as a head-mounted device. The wearable electronic device may have a force sensor that gathers force measurements as the wearable electronic device is being worn. The force sensor may have a force sensor housing structure configured to form a fluid-filled channel and one or more collapsible force sensor elements such as collapsible fluid-filled domes or other protruding portions of the force sensor housing structure. A pressure sensor may monitor changes in pressure in a fluid that fills the channel and the fluid-filled domes. The monitored changes in pressure represent force measurements for force applied by a user's body part or other objects on the collapsible force sensor elements.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: March 1, 2022
    Assignee: Apple Inc.
    Inventors: Storrs T. Hoen, Kathryn P. Crews, J. Stephen Smith
  • Patent number: 11153676
    Abstract: Disclosed herein are electronic devices having a deformable surfaces through which a user can provide inputs to the device by applying a force such as a pinch or a squeeze. A particular embodiment is an earpiece with the deformable surface part of an elongate section extending from an earbud. The deformable surface includes an incompressible hyperelastic material and a pressure sensor. The pressure sensor includes a pressure sensing element and a void defined between the pressure sensing element and the incompressible hyperelastic material. An applied force is transferred by the incompressible hyperelastic material to compress the void and change an internal pressure thereof. The changed pressure is detected by the pressure sensor, and can result in changed operation of the electronic device.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: October 19, 2021
    Assignee: Apple Inc.
    Inventors: John Stephen Smith, Storrs T. Hoen
  • Publication number: 20200283935
    Abstract: Interlacing equipment may be used to form fabric and to create a gap in the fabric. The fabric may include one or more conductive strands. An insertion tool may be used to align an electrical component with the conductive strands during interlacing operations. A soldering tool may be used to remove insulation from the conductive strands to expose conductive segments on the conductive strands. The soldering tool may be used to solder the conductive segments to the electrical component. The solder connections may be located in grooves in the electrical component. An encapsulation tool may dispense encapsulation material in the grooves to encapsulate the solder connections. After the electrical component is electrically connected to the conductive strands, the insertion tool may position and release the electrical component in the gap. A component retention tool may temporarily be used to retain the electrical component in the gap as interlacing operations continue.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Kyle L. Chatham, Kathryn P. Crews, Didio V. Gomes, Benjamin J. Grena, Storrs T. Hoen, Steven J. Keating, David M. Kindlon, Daniel A. Podhajny, Andrew L. Rosenberg, Daniel D. Sunshine, Lia M. Uesato, Joseph B. Walker, Felix Binder, Bertram Wendisch, Martin Latta, Ulrich Schläpfer, Franck Robin, Michael Baumann, Helen Wächter Fischer
  • Publication number: 20200280792
    Abstract: Disclosed herein are electronic devices having a deformable surfaces through which a user can provide inputs to the device by applying a force such as a pinch or a squeeze. A particular embodiment is an earpiece with the deformable surface part of an elongate section extending from an earbud. The deformable surface includes an incompressible hyperelastic material and a pressure sensor. The pressure sensor includes a pressure sensing element and a void defined between the pressure sensing element and the incompressible hyperelastic material. An applied force is transferred by the incompressible hyperelastic material to compress the void and change an internal pressure thereof. The changed pressure is detected by the pressure sensor, and can result in changed operation of the electronic device.
    Type: Application
    Filed: May 15, 2020
    Publication date: September 3, 2020
    Inventors: John Stephen Smith, Storrs T. Hoen
  • Patent number: 10659866
    Abstract: Disclosed herein are electronic devices having a deformable surfaces through which a user can provide inputs to the device by applying a force such as a pinch or a squeeze. A particular embodiment is an earpiece with the deformable surface part of an elongate section extending from an earbud. The deformable surface includes an incompressible hyperelastic material and a pressure sensor. The pressure sensor includes a pressure sensing element and a void defined between the pressure sensing element and the incompressible hyperelastic material. An applied force is transferred by the incompressible hyperelastic material to compress the void and change an internal pressure thereof. The changed pressure is detected by the pressure sensor, and can result in changed operation of the electronic device.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: May 19, 2020
    Assignee: Apple Inc.
    Inventors: John Stephen Smith, Storrs T. Hoen
  • Patent number: 10649528
    Abstract: A fabric-based item such as a fabric glove may include force sensing circuitry. The force sensing circuitry may include force sensor elements formed from electrodes on a compressible substrate such as an elastomeric polymer substrate. The fabric may include intertwined strands of material including conductive strands. Signals from the force sensing circuitry may be conveyed to control circuitry in the item using the conductive strands. Wireless circuitry in the fabric-based item may be used to convey force sensor information to external equipment. The compressible substrate may have opposing upper and lower surfaces. Electrodes for the force sensor elements may be formed on the upper and lower surfaces. Stiffeners may overlap the electrodes to help decouple adjacent force sensor elements from each other. Integrated circuits can be attached to respective force sensing elements using adhesive.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: May 12, 2020
    Assignee: Apple Inc.
    Inventors: Storrs T. Hoen, Daniel D. Sunshine, Aidan N. Zimmerman, Daniel A. Podhajny, Maurice P. May
  • Publication number: 20200092629
    Abstract: Disclosed herein are electronic devices having a deformable surfaces through which a user can provide inputs to the device by applying a force such as a pinch or a squeeze. A particular embodiment is an earpiece with the deformable surface part of an elongate section extending from an earbud. The deformable surface includes an incompressible hyperelastic material and a pressure sensor. The pressure sensor includes a pressure sensing element and a void defined between the pressure sensing element and the incompressible hyperelastic material. An applied force is transferred by the incompressible hyperelastic material to compress the void and change an internal pressure thereof. The changed pressure is detected by the pressure sensor, and can result in changed operation of the electronic device.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 19, 2020
    Inventors: John Stephen Smith, Storrs T. Hoen
  • Publication number: 20190369779
    Abstract: A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 5, 2019
    Inventors: Jonah A. Harley, Peter W. Richards, Brian Q. Huppi, Omar Sze Leung, Dhaval N. Shah, Martin P. Grunthaner, Steven P. Hotelling, Miguel C. Christophy, Vivek Katiyar, Tang Yew Tan, Christopher J. Butler, Erik G. De Jong, Ming Sartee, Rui Qiao, Steven J. Martisauskas, Storrs T. Hoen, Richard Hung Minh Dinh, Lee E. Hooton, Ian A. Spraggs, Sawyer I. Cohen, David A. Pakula
  • Patent number: 10496212
    Abstract: Although embodiments have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the various embodiments as defined by the appended claims. The foregoing description has broad application. Accordingly, the discussion of any embodiment is meant only to be an example and is not intended to suggest that the scope of the disclosure, including the claims, is limited to these examples.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: December 3, 2019
    Assignee: Apple Inc.
    Inventors: Storrs T. Hoen, Kristina A. Babiarz, Miguel C. Christophy, Romain A. Teil, Sinan Filiz, Vivek Katiyar
  • Patent number: 10490035
    Abstract: Embodiments of the present disclosure are directed to a haptic actuator or a device having a haptic actuator that is capable of producing short, sharp and crisp pulses in a short amount of time.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: November 26, 2019
    Assignee: Apple Inc.
    Inventors: John B. Morrell, Jonah A. Harley, Storrs T. Hoen, Brett W. Degner, Camille Moussette, Anthony Guetta, Samuel B. Weiss, Douglas A. Scott
  • Publication number: 20190354179
    Abstract: A fabric-based item such as a fabric glove may include force sensing circuitry. The force sensing circuitry may include force sensor elements formed from electrodes on a compressible substrate such as an elastomeric polymer substrate. The fabric may include intertwined strands of material including conductive strands. Signals from the force sensing circuitry may be conveyed to control circuitry in the item using the conductive strands. Wireless circuitry in the fabric-based item may be used to convey force sensor information to external equipment. The compressible substrate may have opposing upper and lower surfaces. Electrodes for the force sensor elements may be formed on the upper and lower surfaces. Stiffeners may overlap the electrodes to help decouple adjacent force sensor elements from each other. Integrated circuits can be attached to respective force sensing elements using adhesive.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 21, 2019
    Inventors: Storrs T. Hoen, Daniel D. Sunshine, Aidan N. Zimmerman, Daniel A. Podhajny, Maurice P. May
  • Patent number: 10437331
    Abstract: A fabric-based item such as a fabric glove may include force sensing circuitry. The force sensing circuitry may include force sensor elements formed from electrodes on a compressible substrate such as an elastomeric polymer substrate. The fabric may include intertwined strands of material including conductive strands. Signals from the force sensing circuitry may be conveyed to control circuitry in the item using the conductive strands. Wireless circuitry in the fabric-based item may be used to convey force sensor information to external equipment. The compressible substrate may have opposing upper and lower surfaces. Electrodes for the force sensor elements may be formed on the upper and lower surfaces. Stiffeners may overlap the electrodes to help decouple adjacent force sensor elements from each other. Integrated circuits can be attached to respective force sensing elements using adhesive.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: October 8, 2019
    Assignee: Apple Inc.
    Inventors: Storrs T. Hoen, Daniel D. Sunshine, Aidan N. Zimmerman, Daniel A. Podhajny, Maurice P. May
  • Patent number: 10386970
    Abstract: A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: August 20, 2019
    Assignee: Apple Inc.
    Inventors: Jonah A. Harley, Peter W. Richards, Brian Q. Huppi, Omar Sze Leung, Dhaval N. Shah, Martin P. Grunthaner, Steven P. Hotelling, Miguel C Christophy, Vivek Katiyar, Tang Yew Tan, Christopher J. Butler, Erik G. de Jong, Ming Sartee, Rui Qiao, Steven J. Martisauskas, Storrs T. Hoen, Richard Hung Minh Dinh, Lee E. Hooton, Ian A. Spraggs, Sawyer I. Cohen, David A. Pakula
  • Publication number: 20190235688
    Abstract: Although embodiments have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the various embodiments as defined by the appended claims. The foregoing description has broad application. Accordingly, the discussion of any embodiment is meant only to be an example and is not intended to suggest that the scope of the disclosure, including the claims, is limited to these examples.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Inventors: Storrs T. Hoen, Kristina A. Babiarz, Miguel C. Christophy, Romain A. Teil, Sinan Filiz, Vivek Katiyar
  • Patent number: 10275068
    Abstract: An electronic device has a force sensor that determines a measure of applied force from a user contacting a cover glass of the device. In one embodiment, a frame at least partially encloses an interior of the electronic device and has an open end. A cover glass covers the open end of the frame and is movably connected to the frame to allow movement of the cover glass in response to one or more forces applied to an external surface of the cover glass. A plurality of strain probes is positioned under the cover glass, between the cover glass and the frame, and is arranged to output a plurality of strain signals response to the one or more forces applied to the cover glass. A force processing module is configured to at least calculate an amount of force applied to the cover glass based on the plurality of strain signals.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: April 30, 2019
    Assignee: Apple Inc.
    Inventors: Storrs T. Hoen, Kristina A. Babiarz, Miguel C. Christophy, Romain A. Teil, Sinan Filiz, Vivek Katiyar
  • Publication number: 20190113972
    Abstract: A fabric-based item such as a fabric glove may include force sensing circuitry. The force sensing circuitry may include force sensor elements formed from electrodes on a compressible substrate such as an elastomeric polymer substrate. The fabric may include intertwined strands of material including conductive strands. Signals from the force sensing circuitry may be conveyed to control circuitry in the item using the conductive strands. Wireless circuitry in the fabric-based item may be used to convey force sensor information to external equipment. The compressible substrate may have opposing upper and lower surfaces. Electrodes for the force sensor elements may be formed on the upper and lower surfaces. Stiffeners may overlap the electrodes to help decouple adjacent force sensor elements from each other. Integrated circuits can be attached to respective force sensing elements using adhesive.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 18, 2019
    Inventors: Storrs T. Hoen, Daniel D. Sunshine, Aidan N. Zimmerman, Daniel A. Podhajny, Maurice P. May