Patents by Inventor Stoyan Nihtianov

Stoyan Nihtianov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8426831
    Abstract: In one an embodiment, there is provided an assembly comprising at least one detector. Each of the at least one detector includes a substrate having a doped region of a first conduction type, a layer of dopant material of a second conduction type located on the substrate, a diffusion layer formed within the substrate and in contact with the layer of dopant material and the doped region of the substrate, wherein a doping profile, which is representative of a doping material concentration of the diffusion layer, increases from the doped region of the substrate to the layer of dopant material, a first electrode connected to the layer of dopant material, and a second electrode connected to the substrate. The diffusion layer is arranged to form a radiation sensitive surface.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: April 23, 2013
    Assignee: ASML Netherlands B.V.
    Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
  • Patent number: 8324598
    Abstract: In one an embodiment, there is provided an assembly comprising at least one detector. Each of the at least one detector includes a substrate having a doped region of a first conduction type, a layer of dopant material of a second conduction type located on the substrate, a diffusion layer formed within the substrate and in contact with the layer of dopant material and the doped region of the substrate, wherein a doping profile, which is representative of a doping material concentration of the diffusion layer, increases from the doped region of the substrate to the layer of dopant material, a first electrode connected to the layer of dopant material, and a second electrode connected to the substrate. The diffusion layer is arranged to form a radiation sensitive surface.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: December 4, 2012
    Assignee: ASML Netherlands B.V.
    Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
  • Publication number: 20120268722
    Abstract: In one an embodiment, there is provided an assembly comprising at least one detector. Each of the at least one detector includes a substrate having a doped region of a first conduction type, a layer of dopant material of a second conduction type located on the substrate, a diffusion layer formed within the substrate and in contact with the layer of dopant material and the doped region of the substrate, wherein a doping profile, which is representative of a doping material concentration of the diffusion layer, increases from the doped region of the substrate to the layer of dopant material, a first electrode connected to the layer of dopant material, and a second electrode connected to the substrate. The diffusion layer is arranged to form a radiation sensitive surface.
    Type: Application
    Filed: February 17, 2012
    Publication date: October 25, 2012
    Applicant: ASML Netherlands B.V.
    Inventors: Stoyan NIHTIANOV, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Sholtes
  • Publication number: 20120113402
    Abstract: A lithographic apparatus is described having a liquid supply system configured to at least partly fill a space between a projection system of the lithographic apparatus and a substrate with liquid, a barrier member arranged to substantially contain the liquid within the space, and one or more elements to control and/or compensate for evaporation of liquid from the substrate.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 10, 2012
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Theodorus Petrus Maria CADEE, Johannes Henricus Wilhelmus Jacobs, Nicolaas Ten Kate, Erik Roelof Loopstra, Aschwin Lodewijk Hendricus Johannes Vermeer, Jeroen Johannes Sophia Maria Mertens, Christianus Gerardus Maria De Mol, Marcel Johannus Elisabeth Hubertus Muitjens, Antonius Johannus Van Der Net, Joost Jeroen Ottens, Johannes Anna Quaedackers, Maria Elisabeth Reuhman-Huisken, Marco Koert Stavenga, Patricius Aloysius Jacobus Tinnemans, Martinus Comelis Maria Verhagen, Jacobus Johannus Leonardus Hendricus Verspay, Frederik Eduard De Jong, Koen Goorman, Boris Menchtchikov, Herman Boom, Stoyan Nihtianov, Richard Moerman, Martin Frans Pierre Smeets, Bart Leonard Peter Schoondermark, Franciscus Johannes Joseph Janssen, Michel Riepen
  • Patent number: 8138485
    Abstract: A radiation detector, a method of manufacturing a radiation detector, and a lithographic apparatus comprising a radiation detector. The radiation detector has a radiation sensitive surface. The radiation sensitive surface is sensitive to radiation wavelengths between 10-200 nm and charged particles. The radiation detector has a silicon substrate, a dopant layer, a first electrode, and a second electrode. The silicon substrate is provided in a surface area at a first surface side with doping profile of a certain conduction type. The dopant layer is provided on the first surface side of the silicon substrate. The dopant layer has a first layer of dopant material and a second layer. The second layer is a diffusion layer in contact with the surface area at the first surface side of the silicon substrate. The first electrode is connected to dopant layer. The second electrode is connected to the silicon substrate.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 20, 2012
    Assignee: ASML Netherlands B.V.
    Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Joseph Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
  • Publication number: 20100321650
    Abstract: A lithographic apparatus is described having a liquid supply system configured to at least partly fill a space between a projection system of the lithographic apparatus and a substrate with liquid, a barrier member arranged to substantially contain the liquid within the space, and one or more elements to control and/or compensate for evaporation of liquid from the substrate.
    Type: Application
    Filed: August 26, 2010
    Publication date: December 23, 2010
    Applicant: ASML NETHERLANDS B.V.
    Inventors: THEODORUS PETRUS MARIA CADEE, Johannes Henricus Wilhelmus Jacobs, Nicolaas Ten Kate, Erik Roelof Loopstra, Aschwin Lodewijk Hendricus Johannes Vermeer, Jeroen Johannes Sophia Maria Mertens, Christianus Gerardus Maria De Mol, Marcel Johannus Elisabeth Hubertus Muitjens, Antonius Johannus Van Der Net, Joost Jeroen Ottens, Johannes Anna Quaedackers, Mana Elisabeth Reuhman-Huisken, Marco Koert Stavenga, Patricius Aloysius Jacobus Tinnemans, Martinus Comelis Maria Verhagen, Jacobus Johannus Leonardus Hendricus Verspay, Frederik Eduard De Jong, Koen Goorman, Boris Menchtchikov, Herman Boom, Stoyan Nihtianov, Richard Moerman, Martin Frans Pierre Smeets, Bart Leonard Peter Schoondermark, Franciscus Johannes Joseph Janssen, Michel Riepen
  • Patent number: 7830495
    Abstract: A lithographic apparatus having a stationary magnet motor to drive a support such as a substrate support or a patterning device support, may be provided with a measurement system to measure a position of the support in question, e.g., to provide a safety system to prevent a collision of the support with another part. The measurement system may be configured to measure a magnetic field strength of an alternating magnetic field generated by the magnet assembly of the stationary magnet motor, and/or measure generation of eddy currents in a metallic layer shielding the magnet assembly in combination with an inductance measurement of an electromagnet generating the alternating magnetic field causing the eddy currents, and/or measure light using an optical position sensitive sensor such as a CCD metric or linear photodiode positioned in a light plane emitted by an emitter.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: November 9, 2010
    Assignee: ASML Netherlands B.V.
    Inventors: Olaf Hubertus Wilhelmus Van Bruggen, Marcel Koenraad Marie Baggen, Johannes Roland Dassel, Remko Wakker, Stoyan Nihtianov, Frank Auer, Frits Van Der Meulen, Patrick David Vogelsang, Martinus Cornelis Reijnen, Tom Van Zutphen
  • Patent number: 7804575
    Abstract: A lithographic apparatus is described having a liquid supply system configured to at least partly fill a space between a projection system of the lithographic apparatus and a substrate with liquid, a barrier member arranged to substantially contain the liquid within the space, and one or more elements to control and/or compensate for evaporation of liquid from the substrate.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: September 28, 2010
    Assignee: ASML Netherlands B.V.
    Inventors: Theodorus Petrus Maria Cadee, Johannes Henricus Wilhelmus Jacobs, Nicolaas Ten Kate, Erik Roelof Loopstra, Aschwin Lodewijk Hendricus Johannes Vermeer, Jeroen Johannes Sophia Maria Mertens, Christianus Gerardus Maria De Mol, Marcel Johannus Elisabeth Hubertus Muitjens, Antonius Johannus Van Der Net, Joost Jeroen Ottens, Johannes Anna Quaedackers, Maria Elisabeth Reuhman-Huisken, Marco Koert Stavenga, Patricius Aloysius Jacobus Tinnemans, Martinus Cornelis Maria Verhagen, Jacobus Johannus Leonardus Hendricus Verspay, Frederik Eduard De Jong, Koen Goorman, Boris Menchtchikov, Herman Boom, Stoyan Nihtianov, Richard Moerman, Martin Frans Pierre Smeets, Bart Leonard Peter Schoondermark, Franciscus Johannes Joseph Janssen, Michel Riepen
  • Publication number: 20100165310
    Abstract: A system for inspecting an extreme ultra violet (EUV) mask. The system includes an array of sensors and an optical system. The array of sensors is configured to produce analog data corresponding to received optical energy. The optical system is configured to direct EUV light from an inspection area of an EUV patterning device onto the array of sensors, whereby the analog data is used to determine defects or to compensate for irregularities found on the EUV mask.
    Type: Application
    Filed: October 21, 2009
    Publication date: July 1, 2010
    Applicant: ASML Holding N.V.
    Inventors: Harry SEWELL, Stoyan Nihtianov, Luigi Scaccabarozzi
  • Patent number: 7586108
    Abstract: The invention relates to a radiation detector, a method of manufacturing a radiation detector and a lithographic apparatus comprising a radiation detector. The radiation detector has a radiation-sensitive surface. The radiation-sensitive surface is sensitive for radiation with a wavelength between 10-200 nm. The radiation detector has a silicon substrate, a dopant layer, a first electrode and a second electrode. The silicon substrate is provided in a surface area at a first surface side with doping profile of a certain conduction type. The dopant layer is provided on the first surface side of the silicon substrate. The dopant layer has a first layer of dopant material and a second layer. The second layer is a diffusion layer which is in contact with the surface area at the first surface side of the silicon substrate. The first electrode is connected to dopant layer. The second electrode is connected to the Silicon substrate.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: September 8, 2009
    Assignee: ASML Netherlands B.V.
    Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
  • Publication number: 20090021717
    Abstract: A radiation detector, a method of manufacturing a radiation detector, and a lithographic apparatus comprising a radiation detector. The radiation detector has a radiation sensitive surface. The radiation sensitive surface is sensitive to radiation wavelengths between 10-200 nm and charged particles. The radiation detector has a silicon substrate, a dopant layer, a first electrode, and a second electrode. The silicon substrate is provided in a surface area at a first surface side with doping profile of a certain conduction type. The dopant layer is provided on the first surface side of the silicon substrate. The dopant layer has a first layer of dopant material and a second layer. The second layer is a diffusion layer in contact with the surface area at the first surface side of the silicon substrate. The first electrode is connected to dopant layer. The second electrode is connected to the silicon substrate.
    Type: Application
    Filed: June 24, 2008
    Publication date: January 22, 2009
    Applicant: ASML Netherlands B.V.
    Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus, Joshepus, Maria Kemper, Marc Antonius, Maria Haast, Gerardus Wilhelmus, Petrus, Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas, Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus, Maria Scholtes
  • Publication number: 20090015246
    Abstract: A lithographic apparatus having a stationary magnet motor to drive a support such as a substrate support or a patterning device support, may be provided with a measurement system to measure a position of the support in question, e.g., to provide a safety system to prevent a collision of the support with another part. The measurement system may be configured to measure a magnetic field strength of an alternating magnetic field generated by the magnet assembly of the stationary magnet motor, and/or measure generation of eddy currents in a metallic layer shielding the magnet assembly in combination with an inductance measurement of an electromagnet generating the alternating magnetic field causing the eddy currents, and/or measure light using an optical position sensitive sensor such as a CCD metric or linear photodiode positioned in a light plane emitted by an emitter.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 15, 2009
    Applicant: ASML Netherlands B.V.
    Inventors: Olaf Hubertus Wilhelmus Van Bruggen, Frank Auer, Marcel Koenraad Marie Baggen, Frits Van Der Meulen, Patrick David Vogelsang, Martinus Cornelis Reijnen, Johannes Roland Dassel, Stoyan Nihtianov, Remko Wakker, Tom Van Zutphen
  • Publication number: 20080315121
    Abstract: The invention relates to a radiation detector, a method of manufacturing a radiation detector and a lithographic apparatus comprising a radiation detector. The radiation detector has a radiation-sensitive surface. The radiation-sensitive surface is sensitive for radiation with a wavelength between 10-200 nm. The radiation detector has a silicon substrate, a dopant layer, a first electrode and a second electrode. The silicon substrate is provided in a surface area at a first surface side with doping profile of a certain conduction type. The dopant layer is provided on the first surface side of the silicon substrate. The dopant layer has a first layer of dopant material and a second layer. The second layer is a diffusion layer which is in contact with the surface area at the first surface side of the silicon substrate. The first electrode is connected to dopant layer. The second electrode is connected to the Silicon substrate.
    Type: Application
    Filed: June 25, 2007
    Publication date: December 25, 2008
    Applicant: ASML Netherlands B.V.
    Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
  • Patent number: 7321416
    Abstract: The present invention comprises a lithographic apparatus and device manufacturing method method that uses a patterning device that increase a number of individually controllable elements that are programmed simultaneously to increase an update rate of an array of individually controllable elements. A number of required high speed analog inputs to the array is reduced. The complexity of the array is reduced and the maximum update speed of the array is increased. Furthermore, the number of elements within an array can be readily expanded. The patterning device can be divided into a plurality of groups of cells and the lithographic apparatus can comprise a plurality of supply channels. Each supply channel can be arranged to provide a voltage signal to each cell in a respective group of cells. This can reduce the number of required inputs to the patterning device for individually addressing each cell.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: January 22, 2008
    Assignee: ASML Netherlands B.V.
    Inventors: Martinus Cornelis Reijnen, Andrej Makarovic, Lambertus Gerardus Maria Kessels, Stoyan Nihtianov, Petrus Wilhelmus Josephus Maria Kemper, Kamen Hristov Chilov
  • Patent number: 7304715
    Abstract: A lithographic apparatus is disclosed. The apparatus includes an illumination system configured to condition a radiation beam, and a support constructed to support a patterning device. The patterning device is capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam. The apparatus also includes a substrate table constructed to hold a substrate, a projection system configured to project the patterned radiation beam onto a target portion of the substrate, a liquid supply system configured to at least partly fill a space between the projection system and the substrate with liquid, a seal member arranged to substantially contain the liquid within the space, and elements to control and/or compensate for evaporation of immersion liquid from the substrate.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: December 4, 2007
    Assignee: ASML Netherlands B.V.
    Inventors: Theodorus Petrus Maria Cadee, Joost Jeroen Ottens, Jeroen Johannes Sophia Maria Mertens, Frederick Eduard De Jong, Koen Goorman, Boris Menchtchikov, Marco Koert Stavenga, Martin Frans Pierre Smeets, Aschwin Lodewijk Hendricus Johannes Van Meer, Bart Leonard Peter Schoondermark, Patricius Aloysius Jacobus Tinnemans, Stoyan Nihtianov
  • Patent number: 7190437
    Abstract: A lithographic apparatus capable of wirelessly communicating control and power signals, is presented herein. In one embodiment, the apparatus comprises an illumination system to provide a beam of radiation, a support structure configured to support a patterning device that imparts the beam of radiation with a pattern in its cross-section, a substrate holder configured to hold a substrate, a projection system to project the patterned beam radiation onto a target portion of the substrate, and a wireless signaling system configured to transmit and receive information-bearing electromagnetic radiation. The wireless system comprises at least a transmitter to transmit the electromagnetic radiation and a first transducer configured to receive and convert the electromagnetic radiation into a first electrical signal containing the information which is used to control at least a portion of the support structure, the substrate table, the projection system, and the illumination system.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: March 13, 2007
    Assignee: ASML Netherlands B.V.
    Inventors: Hans Butler, Stoyan Nihtianov, Petrus Wilhelmus Josephus Maria Kemper
  • Patent number: 7170583
    Abstract: A lithographic apparatus includes a substrate table to hold a substrate; a substrate table position measurement system to measure a position quantity of the substrate table, a projection system to project a patterned radiation beam onto a target portion of the substrate, a fluid supply system to supply an immersion fluid in a space between a downstream lens of the projection system and the substrate, and a fluid supply system position measurement system to measure a position quantity of the fluid supply system. To prevent a collision between the fluid supply system and the substrate table, a damage control system of the lithographic apparatus may include a calculator to calculate a dimensional quantity of a gap between the fluid supply system and the substrate table from the positioned quantity of the substrate table and the position quantity of the fluid supply system. The damage control system may generate a warning signal when the dimensional quantity goes beyond a predetermined safety level.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: January 30, 2007
    Assignee: ASML Netherlands B.V.
    Inventors: Frits Van Der Meulen, Henrikus Herman Marie Cox, Martijn Houkes, Robertus Johannes Van Vliet, Stoyan Nihtianov, Petrus Wilhelmus Josephus Maria Kemper, Roland Petrus Hendrikus Hanegraaf
  • Publication number: 20070002294
    Abstract: A lithographic apparatus includes a substrate table to hold a substrate; a substrate table position measurement system to measure a position quantity of the substrate table, a projection system to project a patterned radiation beam onto a target portion of the substrate, a fluid supply system to supply an immersion fluid in a space between a downstream lens of the projection system and the substrate, and a fluid supply system position measurement system to measure a position quantity of the fluid supply system. To prevent a collision between the fluid supply system and the substrate table, a damage control system of the lithographic apparatus may include a calculator to calculate a dimensional quantity of a gap between the fluid supply system and the substrate table from the positioned quantity of the substrate table and the position quantity of the fluid supply system. The damage control system may generate a warning signal when the dimensional quantity goes beyond a predetermined safety level.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 4, 2007
    Applicant: ASML Netherlands B.V.
    Inventors: Frits Van Der Meulen, Henrikus Cox, Martijn Houkes, Robertus Van Vliet, Stoyan Nihtianov, Petrus Wilhelmus Kemper, Roland Hanegraaf
  • Publication number: 20060285094
    Abstract: The present invention comprises a lithographic apparatus and device manufacturing method method that uses a patterning device that increase a number of individually controllable elements that are programmed simultaneously to increase an update rate of an array of individually controllable elements. A number of required high speed analog inputs to the array is reduced. The complexity of the array is reduced and the maximum update speed of the array is increased. Furthermore, the number of elements within an array can be readily expanded. The patterning device can be divided into a plurality of groups of cells and the lithographic apparatus can comprise a plurality of supply channels. Each supply channel can be arranged to provide a voltage signal to each cell in a respective group of cells. This can reduce the number of required inputs to the patterning device for individually addressing each cell.
    Type: Application
    Filed: June 15, 2005
    Publication date: December 21, 2006
    Applicant: ASML Netherlands B.V.
    Inventors: Martinus Reijnen, Andrej Makarovic, Lambertus Kessels, Stoyan Nihtianov, Petrus Wilhelmus Kemper, Kamen Chilov
  • Patent number: 7148494
    Abstract: The invention relates to a level sensor for use in a lithographic apparatus that determines a surface height of a substrate. The level sensor includes an emitter and a receiver, wherein the emitter is arranged to emit a signal directed to a predetermined position on the surface of the substrate, such that the signal is at least partially reflected by the substrate to render a reflected signal. The receiver is arranged to receive at least part of the reflected signal, and the level sensor is arranged to determine the surface height of the substrate with respect to the level sensor based on the emitted and received signal. The signal includes a pressure wave.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: December 12, 2006
    Assignee: ASML Netherlands B.V.
    Inventors: Anastasius Jacobus Anicetus Bruinsma, Frank Staals, Robert Jan Van Wijk, Stoyan Nihtianov