Patents by Inventor Stuart A. Morrison

Stuart A. Morrison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11966548
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with at least a portion of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC to determine characteristic(s) of the overlay that is associated with the at least a portion of the surface of the TSD.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: April 23, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Patent number: 11953563
    Abstract: A Hall effect sensor system includes a Hall effect sensor and a drive-sense circuit (DSC). The Hall effect sensor includes an input port to receive a DC (direct current) current signal and generates a Hall voltage based on exposure to a magnetic field. The DSC generates the DC current signal based on a reference signal and drives it via a single line that operably couples the DSC to the Hall effect sensor and simultaneously to sense the DC current signal via the single line. The DSC detects an effect on the DC current signal corresponding to the Hall voltage that is generated across the Hall effect sensor based on exposure of the Hall effect sensor to the magnetic field and generates a digital signal representative of the Hall voltage.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11954057
    Abstract: A method includes determining, by one or more processing entities associated with at least one of: one or more low voltage drive circuits (LVDCs) and one or more other LVDCs, an initial data conveyance scheme and an initial communication scheme for each communication of a plurality of communications on one or more lines of a bus. The method further includes determining a desired number of channels for each communication of the plurality of communications based on the initial data conveyance scheme and the initial communication scheme, a desired total number of channels for the plurality of communications based on the desired number of channels, determining whether the desired total number of channels for the plurality of communications exceeds a total number of available channels. If not, allocating the desired number of channels to each communication of the plurality of communications in accordance with the channel allocation mapping.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11953564
    Abstract: A Hall effect sensor system includes a Hall effect sensor and a drive-sense circuit (DSC). The Hall effect sensor includes an input port to receive a DC (direct current) current signal and generates a Hall voltage based on exposure to a magnetic field. The DSC generates the DC current signal based on a reference signal and drives it via a single line that operably couples the DSC to the Hall effect sensor and simultaneously to sense the DC current signal via the single line. The DSC detects an effect on the DC current signal corresponding to the Hall voltage that is generated across the Hall effect sensor based on exposure of the Hall effect sensor to the magnetic field and generates a digital signal representative of the Hall voltage.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11954321
    Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11947746
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: April 2, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11947761
    Abstract: An encoded data pattern touchscreen sensing computing device includes a touchscreen, a plurality of electrodes, a plurality of drive-sense circuits, and a processing module. When enabled and in close proximity to an encoded data pattern, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes caused by one or more electrical materials of the encoded data pattern. The encoded data pattern includes one or more electrical materials arranged in a pattern. Electrical properties of the one or more electrical materials and the pattern are representative of data. The processing module is operable to receive a set of detected changes in electrical characteristics of the set of drive-sense circuits, interpret the detected changes in electrical characteristics as a set of impedance values representative of the one or more electrical materials of the encoded data pattern, and interpret the set of impedance values to determine the data.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: April 2, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, Jr., Timothy W. Markison, Patricia Markison Healy
  • Patent number: 11947381
    Abstract: A data formatting module of a low voltage drive circuit (LVDC) includes a sample and hold circuit, an interpreter, a first buffer, a digital to digital converter circuit, and a data packeting circuit. The sample and hold circuit is operable to sample and hold an n-bit digital value of filtered digital data to produce an n-bit sampled digital data value. The interpreter is operable to convert the n-bit sampled digital data value into interpreted n-bit sampled digital data. The interpreter is operable to write the interpreted n-bit sampled digital data into the first buffer in accordance with a write clock until a digital word is formed. The digital to digital converter circuit is operable to format the digital word to produce a formatted digital word. The data packeting circuit is operable to generate a data packet from the formatted digital word and output the data packet as received digital data.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: April 2, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11940504
    Abstract: A Hall effect sensor system includes a Hall effect sensor and a drive-sense circuit (DSC). The Hall effect sensor includes an input port to receive a DC (direct current) current signal and generates a Hall voltage based on exposure to a magnetic field. The DSC generates the DC current signal based on a reference signal and drives it via a single line that operably couples the DSC to the Hall effect sensor and simultaneously to sense the DC current signal via the single line. The DSC detects an effect on the DC current signal corresponding to the Hall voltage that is generated across the Hall effect sensor based on exposure of the Hall effect sensor to the magnetic field and generates a digital signal representative of the Hall voltage.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: March 26, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Publication number: 20240094854
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with a region of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC and other digital signals generated by other DSCs determine the region of the surface of the TSD that is associated with the overlay and to adapt sensitivity of the TSD within that region.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Publication number: 20240096406
    Abstract: A method for execution by a Dynamic Random Access (DRAM) cell processing circuit in a read mode, includes receiving a pre-charge input and charging a bit-line operably coupled to a plurality of DRAM cells of a DRAM memory device, including a current DRAM cell, to a pre-charge voltage. The method continues by sensing a voltage change on the bit-line, where the sensing is based on a difference between a voltage stored on a DRAM cell capacitor of the current DRAM cell and the pre-charge voltage and generating a logic input for one of four voltage states for the current DRAM cell. The method then continues by supplying, supplying, based on the logic input, a corresponding logic voltage on the bit-line to refresh the voltage stored in the DRAM cell capacitor of the current DRAM cell.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, JR., Timothy W. Markison
  • Publication number: 20240095203
    Abstract: A low voltage drive circuit (LVDC) includes a digital to analog input circuit to convert transmit digital data into combined analog outbound data, the transmit digital data has a data rate based on a host input clock, and a first portion of the combined analog outbound data has a first oscillation rate based on a first transmit channel clock and a second portion has a second oscillation rate based on a second transmit channel clock. The LVDC also includes a drive sense circuit to convert the combined analog outbound data into an analog transmit signal that is transmitted on a bus. The LVDC also includes a clock circuit to generate a transmit input clock to synchronize receiving the transmit digital data from a host, generate the first transmit channel clock based on the host input clock, and generate the second transmit channel clock based on the host input clock.
    Type: Application
    Filed: April 26, 2023
    Publication date: March 21, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11933607
    Abstract: A capacitive imaging glove includes electrodes implemented throughout the capacitive imaging glove and drive-sense circuits (DSCs) such that a DSC receives a reference signal generates a signal based thereon. The DSC provides the signal to a first electrode via a single line and simultaneously senses it. Note the signal is coupled from the first electrode to the second electrode via a gap therebetween. The DSC generates a digital signal representative of the electrical characteristic of the first electrode. Processing module(s), when enabled, is/are configured to execute operational instructions (e.g., stored in and/or retrieved from memory) to generate the reference signal, process the digital signal to determine the electrical characteristic of the first electrode, and process the electrical characteristic of the first electrode to determine a distance between the first electrode and the second electrode, and generate capacitive image data representative of a shape of the capacitive imaging glove.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: March 19, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Shayne X Short, Timothy W. Markison
  • Patent number: 11935397
    Abstract: A test system includes a test container array including a plurality of test containers and a plurality of electrodes integrated into the test container array. The test system further includes a plurality of drive-sense circuits coupled to the plurality of electrodes, where, when enabled, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes. The test system further includes a processing module operably coupled to receive, from the drive-sense circuits, changes in the electrical characteristics of the plurality of electrodes, and interpret the changes in the electrical characteristics of the plurality of electrodes as impedance values representative of electrical characteristics of biological material present in the test container. The test system further includes a communication module operably coupled to communicate the electrical characteristics of the biological material.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: March 19, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Gerald Dale Morrison, Patrick Troy Gray, Phuong Huynh, Timothy W. Markison, Patricia A. Markison
  • Patent number: 11922800
    Abstract: A test system includes a testing base including a plurality of testing base containers, and a plurality of electrodes integrated into the plurality of testing base containers. The test system further includes a plurality of drive-sense circuits coupled to the plurality of electrodes, where, when enabled, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes. The test system further includes a processing module operably coupled to receive, from the drive-sense circuits, changes in the electrical characteristics of the plurality of electrodes, and interpret the changes in the electrical characteristics of the plurality of electrodes as impedance values representative of electrical characteristics of biological material present in the test container. The test system further includes a communication module operably coupled to communicate the electrical characteristics of the biological material.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: March 5, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Gerald Dale Morrison, Patrick Troy Gray, Phuong Huynh, Timothy W. Markison, Patricia M. Healy
  • Patent number: 9252952
    Abstract: Methods and systems for transmitting and receiving are disclosed. For example, a method for establishing secure communications can include measuring one or more human gestures using a sensor on a first device so as to create a first metric of the one or more human gestures, creating a strong encryption key based on the first metric, including time-based information incorporated into the first metric, and communicating to a second device using the strong encryption key to encrypt data sent to the second device.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: February 2, 2016
    Assignee: Lockheed Martin Corporation
    Inventor: John Stuart Morrison
  • Publication number: 20140181523
    Abstract: Methods and systems for transmitting and receiving are disclosed. For example, a method for establishing secure communications can include measuring one or more human gestures using a sensor on a first device so as to create a first metric of the one or more human gestures, creating a strong encryption key based on the first metric, including time-based information incorporated into the first metric, and communicating to a second device using the strong encryption key to encrypt data sent to the second device.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 26, 2014
    Applicant: Lockheed Martin Corporation
    Inventor: John Stuart MORRISON
  • Patent number: 7426921
    Abstract: In one example, a supercharger and air inlet assembly for a V8 engine comprises a supercharger, a pair of air inlet casings, and a top cover, the air inlet casings having outlet ports which align with inlet ports in the cylinder heads. The supercharger has a rotor casing, the upper sides of which extend upwards to form a peripheral wall where each inlet casing is fastened to the rotor casing by setscrews. Each inlet casing is also secured to the rotor casing by another setscrew located between two casing outlet ports. The arrangement allows the use of a relatively simple casting which simplifies manufacture and minimizes thermal stresses.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: September 23, 2008
    Assignee: Ford Global Technologies, LLC
    Inventors: Andy Billings, Stuart Morrison, Timothy Banks
  • Publication number: 20070107704
    Abstract: A supercharger and air inlet assembly 16 for mounting between the cylinder heads of a V8 engine comprises a supercharger 17, a pair of air inlet casings 18, 19 and a top cover 21, the air inlet casings having outlet ports which align with inlet ports in the cylinder heads. The supercharger 17 has a rotor casing 22, the upper sides of which extend upwards to form a peripheral wall 24 where each inlet casing 18, 19 is fastened to the rotor casing by setscrews 48. Each inlet casing 18, 19 is also secured to the rotor casing 22 by another setscrew 51 located between two casing outlet ports to further secure each inlet casing 18, 19 to the rotor casing 22 at a position on the rotor casing where there is a transverse wall 62. The arrangement allows the use of a relatively simple casting for the supercharger rotor casing 22 which simplifies manufacture and minimises thermal stresses since relatively little constraint is placed on the walls of the rotor casing 22.
    Type: Application
    Filed: October 6, 2006
    Publication date: May 17, 2007
    Inventors: Andy Billings, Stuart Morrison, Timothy Banks
  • Publication number: 20060160430
    Abstract: The present invention is directed to various embodiments of a connector. In one illustrative embodiment, the connector includes a first connector half and a second connector half adapted to be coupled to a power supply source, wherein the first and second connector halves are adapted to, when coupled to one another, define at least one electrical conductive path through the first and second connector halves by contact between at least one conductive member in each of the first and second connector halves, and wherein the first and second connector halves are adapted to be mated or unmated while power is being supplied to at least the second connector half.
    Type: Application
    Filed: January 19, 2005
    Publication date: July 20, 2006
    Inventors: Nadeem Siddiqi, Stuart Morrison