Patents by Inventor Stuart A. Wolf

Stuart A. Wolf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12284921
    Abstract: A superconductor device includes a low-dimensional material with a critical temperature higher than a critical temperature corresponding to a bulk form of the low-dimensional material. The low-dimensional material can include shape and structural modifications of a low-dimensional material. The superconductor device can include various conformational arrangements of the low-dimensional material such as nanoribbons, nanotubes, or helices. The superconductor device can include functional groups, such as hydrogen, attached to the low-dimensional material. The superconductor device can include metallic clusters located in proximity to the low-dimensional material. The superconductor device can include a low-dimensional material which is a monolayer, bilayer or multilayer.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: April 22, 2025
    Assignee: Enterprise Science Fund, LLC
    Inventors: Philipp Braeuninger-Weimer, Brian C. Holloway, Vladimir Z. Kresin, Stuart A. Wolf, George Albert Sawatzky, Christoph Heil
  • Patent number: 12239030
    Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.
    Type: Grant
    Filed: October 9, 2023
    Date of Patent: February 25, 2025
    Assignee: Enterprise Science Fund, LLC
    Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, Jr., Muriel Y. Ishikawa, Victoria Y. H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
  • Publication number: 20240410748
    Abstract: According to various embodiments, a quantum-engineered superconductor metamaterial is formed with a plurality of structurally engineered superconductor nanophononic crystal nanostructures. Each superconductor nanophononic crystal nanostructure may be formed as a crystal of the superconductor material. Structural modifications are made to each superconductor nanophononic crystal nanostructure to alter a characteristic of a phonon mode of the superconducting material to enhance a superconducting parameter thereof.
    Type: Application
    Filed: April 25, 2024
    Publication date: December 12, 2024
    Inventors: Nathan P. Myhrvold, Brian C. Holloway, Stuart A. Wolf, Rohit P. Prasankumar, Mahmoud Hussein, Christoph Heil, Matthew N Julian
  • Publication number: 20240122080
    Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.
    Type: Application
    Filed: October 9, 2023
    Publication date: April 11, 2024
    Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, JR., Muriel Y. Ishikawa, Victoria Y.H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
  • Patent number: 11785866
    Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: October 10, 2023
    Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, Jr., Muriel Y. Ishikawa, Victoria Y. H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
  • Publication number: 20200259066
    Abstract: A superconductor device includes a low-dimensional material with a critical temperature higher than a critical temperature corresponding to a bulk form of the low-dimensional material. The low-dimensional material can include shape and structural modifications of a low-dimensional material. The superconductor device can include various conformational arrangements of the low-dimensional material such as nanoribbons, nanotubes, or helices. The superconductor device can include functional groups, such as hydrogen, attached to the low-dimensional material. The superconductor device can include metallic clusters located in proximity to the low-dimensional material. The superconductor device can include a low-dimensional material which is a monolayer, bilayer or multilayer.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 13, 2020
    Inventors: Philipp Braeuninger-Weimer, Brian C. Holloway, Vladimir Z. Kresin, Stuart A. Wolf, George Albert Sawatzky, Christoph Heil
  • Publication number: 20200028063
    Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.
    Type: Application
    Filed: February 5, 2019
    Publication date: January 23, 2020
    Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, Muriel Y. Ishikawa, Victoria Y.H. Wood, David R. Smith, John Brian Pendry, Charels Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
  • Patent number: 8953366
    Abstract: The present invention proposes an electronic memory device comprising a memory line including a memory domain. The memory line may contain a number of memory domains and a number of fixed domains, wherein each memory domain stores a single binary bit value. A multiferroic element may be disposed proximate to each memory domain allowing the magnetization of the memory domain to be changed using a spin torque current, and ensuring the stability of the magnetization of the domain when it is not being written. The domain boundary between the memory domain and one of its adjacent fixed domains may thereby be moved. An antiferromagnetic element may be disposed proximate to each fixed domain to ensure the stability of the magnetization of these. The value of each memory domain may be read by applying a voltage to a magnetic tunnel junction comprising the memory domain and measuring the current flowing through it.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: February 10, 2015
    Assignee: University of Virginia Patent Foundation
    Inventors: Stuart A. Wolf, Jiwei Lu, Mircea R. Stan
  • Publication number: 20130058157
    Abstract: The present invention proposes an electronic memory device comprising a memory line including a memory domain. The memory line may contain a number of memory domains and a number of fixed domains, wherein each memory domain stores a single binary bit value. A multiferroic element may be disposed proximate to each memory domain allowing the magnetization of the memory domain to be changed using a spin torque current, and ensuring the stability of the magnetization of the domain when it is not being written. The domain boundary between the memory domain and one of its adjacent fixed domains may thereby be moved. An antiferromagnetic element may be disposed proximate to each fixed domain to ensure the stability of the magnetization of these. The value of each memory domain may be read by applying a voltage to a magnetic tunnel junction comprising the memory domain and measuring the current flowing through it.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 7, 2013
    Applicant: University of Virginia Patent Foundation, d/b/a University of Virginia Licensing & Ventures Group
    Inventors: Stuart A. Wolf, Jiwei Lu, Mircea R. Stan
  • Patent number: 6501971
    Abstract: A magnetic ferrite microwave resonator frequency tunable filter and method for tuning a filter having both a resonator portion and a tuning portion. The resonator portion has an input for receiving an electromagnetic signal and an output for emitting an electromagnetic signal. A tuning portion includes a magnetic ferrite element disposed in first and second magnetic fields generated by a fixed magnet and an electromagnet. The magnetic ferrite element has a magnetic permeability determined by the first and second magnetic fields. The first magnetic field places a ferromagnetic resonance frequency of the ferrite element near a frequency of the electromagnetic signal transmitted by the resonator portion. The second magnetic field is variable in response to a varying current supplied to the electromagnet to change the permeability of the ferrite element, to thereby alter the center frequency of the resonator, thereby facilitating tuning of the electromagnetic signal.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: December 31, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stuart A. Wolf, Frederic J. Rachford, John Claassen
  • Patent number: 5574961
    Abstract: A material for disposition on a surface comprising Fe, Co, or FeCo in the form of small single magnetic domain metallic clusters disposed in an insulating matrix of BN. The material may be utilized as a new absorbing material for radar microwave signals. Additionally, the material may be utilized on a magnetic storage substrate to form a new magnetic recording medium.
    Type: Grant
    Filed: January 16, 1985
    Date of Patent: November 12, 1996
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Alan S. Edelstein, Stuart A. Wolf, Kenneth E. Kihlstrom
  • Patent number: 5285067
    Abstract: Highly sensitive infrared detectors can be made from superconducting micrrip transmission lines, having a single ground plane, a dielectric substrate on the ground plane, and a thin film path of superconducting oxide on the substrate. These microstrip transmission lines can be fabricated into resonant or non-resonant structures. The detectors operate by detecting changes in a microwave signal transmitted through the microstrip, measures in the amplitude, frequency or time domains. An embodiment of this invention is an asymmetric ring interferometer, with or without a metal segment in the shorter leg of the interferometer. Another embodiment of this invention is a meander path transmission line, which, in certain configurations, may be used as a single element array with very high resolution in the direction parallel to the meander lines.
    Type: Grant
    Filed: March 5, 1992
    Date of Patent: February 8, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James C. Culbertson, Harvey S. Newman, Jeffrey M. Pond, Stuart A. Wolf, Ulrich Strom
  • Patent number: 5106829
    Abstract: A substantially single phase superconducting composition is formed from a of 1:2:3 molar ratio of fine powders of a superconducting rare earth oxide, CuO, and BaCo.sub.3. The mixed powders and shaped articles formed from the mixed powders are calcined, sintered, and cooled in an oxygen containing atmosphere. The cooling step is done slowly to convert the sample to the orthorhombic structure and to improve the superconducting properties. The article formed is a substantially single phase superconducting composition.
    Type: Grant
    Filed: September 19, 1990
    Date of Patent: April 21, 1992
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Syed B. Quadri, Louis E. Toth, Michael S. Osofsky, Steven H. Lawrence, Donald U. Gubser, Stuart A. Wolf
  • Patent number: 5079220
    Abstract: Large oriented crystals greater than one millimeter in length of high T.sub.c superconducting compounds are grown by mixing starting materials in the correct proportions to make the superconducting compound, forming a mixture. The CO.sub.2 is removed from the mixture and the ternary oxide of the compound is formed from the mixture. Next, the mixture is formed into a self-supporting green body and sintered at a sintering temperature at which the top of the self-supporting green body is molten and the bottom surface is solid. The self-supporting green body is held at the sintering temperature for a time, forming a sintered body. Next, the sintered body is cooled so that crystals form. After this step, the crystals can be further processed to increase their superconducting properties. Finally, the crystals are removed and processed for use.
    Type: Grant
    Filed: May 25, 1989
    Date of Patent: January 7, 1992
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: William L. Lechter, Louis E. Toth, Badri N. Das, Stuart A. Wolf
  • Patent number: 4464065
    Abstract: A granular superconducting thin film bolometer made by anodizing a thin film of such materials as niobium nitride to form a thin granular film separated by and covered with the anodized oxide. The bolometer is cooled to its superconducting state and electrically connected to a biasing and detecting network. Its temporal response is better than 1 ns.
    Type: Grant
    Filed: August 9, 1982
    Date of Patent: August 7, 1984
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stuart A. Wolf, Ulrich Strom, Kurt Weiser
  • Patent number: 4279969
    Abstract: Thin superconducting NbCN films are deposited by reactive sputtering onto a dielectric substrate inside a vacuum chamber. The substrate is heated to a temperature of 600.degree.-1200.degree. C., ultra-pure Argon is introduced into the chamber, and niobium is presputtered from a high-purity target onto a shutter. A cyanogen and nitrogen gas mixture is introduced into the chamber at a rate of approximately 10.sup.-6 Torr liters/sec, and a shutter is opened exposing the substrate to the sputtered niobium. The deposited niobium reacts with the cyanogen-nitrogen gas mixture to form NbCN films of exceptional purity, and which exhibit superior superconductor properties.
    Type: Grant
    Filed: February 20, 1980
    Date of Patent: July 21, 1981
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Thomas L. Francavilla, Stuart A. Wolf
  • Patent number: H39
    Abstract: A multi-layer superconducting shield for shielding superconducting electronic devices from stray magnetic fields. In one embodiment the shield of the present invention comprises alternating concentric layers of a transition metal having a high transition temperature and a metal alloy formed from copper and a non-transition metal, said transition metal and metal alloy forming an interface, and a layer of A.sub.3 B-compound structure metal at the interface of said transition metal and metal alloy. The A.sub.3 B-compound structure metal is a high transition temperature superconductor.In a second embodiment the superconducting shield comprises a thin film of a high transition temperature superconducting nitride compound deposited on a cylindrical substrate. The nitride is deposited by reactive rf sputtering.
    Type: Grant
    Filed: August 5, 1985
    Date of Patent: March 4, 1986
    Assignee: The Government of the United States
    Inventors: Donald U. Gubser, Stuart A. Wolf