Patents by Inventor Stuart L. Anderson

Stuart L. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7567607
    Abstract: An oscillator-amplifier gas discharge laser system and method is disclosed which may comprise a first laser unit which may comprise a first discharge region which may contain an excimer or molecular fluorine lasing gas medium; a first pair of electrodes defining the first discharge region containing the lasing gas medium, a line narrowing unit for narrowing a spectral bandwidth of output laser light pulse beam pulses produced in said first discharge region; a second laser unit which may comprise a second discharge chamber which may contain an excimer or molecular fluorine lasing gas medium; a second pair of electrodes defining the second discharge region containing the lasing gas medium; a pulse power system providing electrical pulses to the first pair of electrodes and to the second pair of electrodes producing gas discharges in the lasing gas medium between the respective first and second pair of electrodes, and laser parameter control mechanism modifying a selected parameter of a selected laser output lig
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: July 28, 2009
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scot T. Smith, William G. Hulburd, Jeffrey Oicles
  • Patent number: 7149234
    Abstract: A high repetition rate, compact, modular gas discharge, ultraviolet laser. The laser is useful as a light source for very rapid inspections of wafers in an integrated circuit fabrication process. It is also useful for reticle writing at very rapid rates. A preferred embodiment operates at pulse repetition rates of 1000 to 4000 Hz and is designed for round-the-clock production line operation. This preferred embodiment comprises a pulse control unit which controls the timing of pulses to an accuracy of less than 4 nanoseconds. Preferred embodiments of this gas discharge laser can be configured to operate with a KrF gas mixture, an ArF gas mixture or an F2 gas mixture, each with an approximate buffer gas, producing 248 nm, 197 nm or 157 nm ultraviolet light pulses.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: December 12, 2006
    Assignee: Cymer, Inc.
    Inventors: Palash P. Das, Jennan Yu, Stuart L. Anderson, Helmut Schillinger, Tobias Pflanz, Claus Strowitzki, Claudia A. Hartmann, Stephan Geiger, Brett D. Smith, William N. Partlo
  • Patent number: 7061961
    Abstract: An oscillator-amplifier gas discharge laser system and method is disclosed which may comprise a first laser unit which may comprise a first discharge region which may contain an excimer or molecular fluorine lasing gas medium; a first pair of electrodes defining the first discharge region containing the lasing gas medium, a line narrowing unit for narrowing a spectral bandwidth of output laser light pulse beam pulses produced in said first discharge region; a second laser unit which may comprise a second discharge chamber which may contain an excimer or molecular fluorine lasing gas medium; a second pair of electrodes defining the second discharge region containing the lasing gas medium; a pulse power system providing electrical pulses to the first pair of electrodes and to the second pair of electrodes producing gas discharges in the lasing gas medium between the respective first and second pair of electrodes, and laser parameter control mechanism modifying a selected parameter of a selected laser output lig
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: June 13, 2006
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scot T. Smith, William G. Hulburd, Jeffrey Oicles
  • Patent number: 6985508
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: January 10, 2006
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Herve A. Besaucele, David W. Meyers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scott T. Smith, William G. Hulburd, Jeffrey Oicles
  • Patent number: 6882674
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: April 19, 2005
    Assignee: Cymer, Inc.
    Inventors: Christian J. Wittak, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov, Thomas D. Steiger, Jerome A. Emilo, Clay C. Titus, Alex P. Ivaschenko, Paolo Zambon, Gamaralalage G. Padmabandu, Mark S. Branham, Sunjay Phatak, Raymond F. Cybulski
  • Patent number: 6757316
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: June 29, 2004
    Assignee: Cymer, Inc.
    Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
  • Publication number: 20040047386
    Abstract: A high repetition rate, compact, modular gas discharge, ultraviolet laser. The laser is useful as a light source for very rapid inspections of wafers in an integrated circuit fabrication process. It is also useful for reticle writing at very rapid rates. A preferred embodiment operates at pulse repetition rates of 1000 to 4000 Hz and is designed for round-the-clock production line operation. This preferred embodiment comprises a pulse control unit which controls the timing of pulses to an accuracy of less than 4 nanoseconds. Preferred embodiments of this gas discharge laser can be configured to operate with a KrF gas mixture, an ArF gas mixture or an F2 gas mixture, each with an approximate buffer gas, producing 248 nm, 197 nm or 157 nm ultraviolet light pulses.
    Type: Application
    Filed: August 27, 2003
    Publication date: March 11, 2004
    Inventors: Palash P. Das, Jennan Yu, Stuart L. Anderson, Helmut Schillinger, Tobias Pflanz, Claus Strowitzki, Claudia A. Hartmann, Stephan Geiger, Brett D. Smith, William N. Partlo
  • Publication number: 20040047385
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: July 24, 2003
    Publication date: March 11, 2004
    Inventors: David S. Knowles, Daniel J.W. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scott T. Smith, William G. Hulburd, Jeffrey Oicles
  • Patent number: 6625191
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: September 23, 2003
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scott T. Smith, William G. Hulburd, Jeffrey Oicles
  • Patent number: 6618421
    Abstract: A high repetition rate, compact, modular gas discharge, ultraviolet laser. The laser is useful as a light source for very rapid inspections of wafers in an integrated circuit fabrication process. It is also useful for reticle writing at very rapid rates. A preferred embodiment operates at pulse repetition rates of 1000 to 4000 Hz and is designed for round-the-clock production line operation. This preferred embodiment comprises a pulse control unit which controls the timing of pulses to an accuracy of less than 4 nanoseconds. Preferred embodiments of this gas discharge laser can be configured to operate with a KrF gas mixture, an ArF gas mixture or an F2 gas mixture, each with an approximate buffer gas, producing 248 nm, 197 nm or 157 nm ultraviolet light pulses.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: September 9, 2003
    Assignee: Cymer, Inc.
    Inventors: Palash P. Das, Jennan Yu, Stuart L. Anderson, Helmut Schillinger, Tobias Pflanz, Claus Strowitzki, Claudia A. Hartmann, Stephan Geiger, Brett D. Smith, William N. Partlo
  • Publication number: 20030118072
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Christian J. Wittak, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov, Thomas D. Steiger, Jerome A. Emilo, Clay C. Titus, Alex P. Ivaschenko, Paolo Zambon, Gamaralalage G. Padmabandu, Mark S. Branham, Sunjay Phatak, Raymond F. Cybulski
  • Patent number: 6567450
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: May 20, 2003
    Assignee: Cymer, Inc.
    Inventors: David W. Myers, Herve A. Besaucele, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Xiaojiang J. Pan, Eckehard D. Onkels, Richard M. Ness, Daniel J. W. Brown
  • Patent number: 6532247
    Abstract: An electric discharge laser with fast wavelength correction. Fast wavelength correction equipment includes at least one piezoelectric drive and a fast wavelength measurement system and fast feedback response times. In a preferred embodiment, equipment is provided to control wavelength on a slow time frame of several milliseconds, on a intermediate time from of about one to three millisecond and on a very fast time frame of a few microseconds. Techniques include a combination of a relatively slow stepper motor and a very fast piezoelectric driver for tuning the laser wavelength using a tuning mirror. A preferred control technique is described (utilizing a very fast wavelength monitor) to provide the slow and intermediate wavelength control and a piezoelectric load cell in combination with the piezoelectric driver to provide the very fast (few microseconds) wavelength control.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: March 11, 2003
    Assignee: Cymer, Inc.
    Inventors: Ronald L. Spangler, Robert N. Jacques, George J. Everage, Stuart L. Anderson, Frederick A. Palenschat, Igor V. Fomenkov, Richard L. Sandstrom, William N. Partlo, John M. Algots, Daniel J. W. Brown
  • Publication number: 20020154668
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: November 30, 2001
    Publication date: October 24, 2002
    Inventors: David S. Knowles, Daniel J. w. Brown, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Eckehard D. Onkels, Richard M. Ness, Scott T. Smith, William G. Hulburd, Jeffrey Oicles
  • Patent number: 6442181
    Abstract: A gas discharge laser capable of operating at pulse rates in the range of 4,000 Hz to 6,000 Hz at pulse energies in the range of 5 mJ to 10 mJ or greater.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: August 27, 2002
    Assignee: Cymer, Inc.
    Inventors: I. Roger Oliver, William N. Partlo, Richard M. Ness, Richard L. Sandstrom, Stuart L. Anderson, Alex P. Ivaschenko, James K. Howey, Vladimir Kulgeyko, Jean-Marc Hueber, Daniel L. Birx
  • Publication number: 20020044586
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: August 29, 2001
    Publication date: April 18, 2002
    Inventors: David W. Myers, Herve A. Besaucele, Alexander I. Ershov, William N. Partlo, Richard L. Sandstrom, Palash P. Das, Stuart L. Anderson, Igor V. Fomenkov, Richard C. Ujazdowski, Xiaojiang J. Pan, Eckehard D. Onkels, Richard M. Ness, Daniel J.W. Brown
  • Publication number: 20020021728
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: May 11, 2001
    Publication date: February 21, 2002
    Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
  • Publication number: 20020012376
    Abstract: A high repetition rate, compact, modular gas discharge, ultraviolet laser. The laser is useful as a light source for very rapid inspections of wafers in an integrated circuit fabrication process. It is also useful for reticle writing at very rapid rates. A preferred embodiment operates at pulse repetition rates of 1000 to 4000 Hz and is designed for round-the-clock production line operation. This preferred embodiment comprises a pulse control unit which controls the timing of pulses to an accuracy of less than 4 nanoseconds. Preferred embodiments of this gas discharge laser can be configured to operate with a KrF gas mixture, an ArF gas mixture or an F2 gas mixture, each with an approximate buffer gas, producing 248 nm, 197 nm or 157 nm ultraviolet light pulses.
    Type: Application
    Filed: July 30, 2001
    Publication date: January 31, 2002
    Inventors: Palash P. Das, Jennan Yu, Stuart L. Anderson, Helmut Schillinger, Tobias Pflanz, Claus Strowitzki, Claudia A. Hartmann, Stephan Geiger, Brett D. Smith, William N. Partlo
  • Publication number: 20020006149
    Abstract: An electric discharge laser with fast wavelength correction. Fast wavelength correction equipment includes at least one piezoelectric drive and a fast wavelength measurement system and fast feedback response times. In a preferred embodiment, equipment is provided to control wavelength on a slow time frame of several milliseconds, on a intermediate time from of about one to three millisecond and on a very fast time frame of a few microseconds. Techniques include a combination of a relatively slow stepper motor and a very fast piezoelectric driver for tuning the laser wavelength using a tuning mirror. A preferred control technique is described (utilizing a very fast wavelength monitor) to provide the slow and intermediate wavelength control and a piezoelectric load cell in combination with the piezoelectric driver to provide the very fast (few microseconds) wavelength control.
    Type: Application
    Filed: February 27, 2001
    Publication date: January 17, 2002
    Inventors: Ronald L. Spangler, Robert N. Jacques, George J. Everage, Stuart L. Anderson, Frederick A. Palenschat, Igor V. Fomenkov, Richard L. Sandstrom, William N. Partlo, John M. Algots, Daniel J.W. Brown
  • Patent number: RE40343
    Abstract: An automatic gain control circuit in the feedback path for a laser wavelength control circuit is described herein. This gain control circuit automatically adjusts the amplification of the analog signals output from a photodetector array, where the array detects a fringe pattern created by a laser beam. Another feature of the preferred embodiment feedback circuit is the automatic setting of a DC offset voltage that compensates for errors in the feedback path and enables an accurate determination of a dark level signal in the fringe pattern signal. This dark level signal provides a reference for measuring the magnitude of the fringe pattern signal. Varying photodetector outputs may now be more accurately measured. The preferred embodiment feedback circuit also employs a very fast amplifier anti-saturation circuit using LED's connected in a clamp circuit.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: May 27, 2008
    Assignee: Cymer, Inc.
    Inventor: Stuart L. Anderson