Patents by Inventor Stuart L. Axelson, Jr.

Stuart L. Axelson, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220338999
    Abstract: A glenoid implant system includes an anchoring structure and a glenoid liner. The anchoring structure includes a base, a wall, and a ledge. The wall extends from a first surface of the base. The ledge extends generally along at least a portion of a first side of the wall, thereby forming an undercut. The wall has a slot formed in a second opposing side of the wall. The glenoid liner is configured to be removably coupled to the anchoring structure. The glenoid liner has a cap portion, a main body, and a deflectable finger. The main body extends from the cap portion and includes a lip configured to engage the undercut of the anchoring structure. The deflectable finger extends from the cap portion. The deflectable finger has a protrusion configured to engage the slot of the anchoring structure to aid in securing the glenoid liner to the anchoring structure.
    Type: Application
    Filed: July 7, 2022
    Publication date: October 27, 2022
    Inventors: Stuart L. Axelson, Jr., Christina Marie Risley, Samantha Jorge Rogers, Frank Joseph Arturi, Erik Richard Kareliussen, Austin Marek Salkind
  • Patent number: 11406506
    Abstract: A glenoid implant system includes an anchoring structure and a glenoid liner. The anchoring structure includes a base, a wall, and a ledge. The wall extends from a first surface of the base. The ledge extends generally along at least a portion of a first side of the wall, thereby forming an undercut. The wall has a slot formed in a second opposing side of the wall. The glenoid liner is configured to be removably coupled to the anchoring structure. The glenoid liner has a cap portion, a main body, and a deflectable finger. The main body extends from the cap portion and includes a lip configured to engage the undercut of the anchoring structure. The deflectable finger extends from the cap portion. The deflectable finger has a protrusion configured to engage the slot of the anchoring structure to aid in securing the glenoid liner to the anchoring structure.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: August 9, 2022
    Assignee: Encore Medical, L.P.
    Inventors: Stuart L. Axelson, Jr., Christina Marie Risley, Samantha Jorge Rogers, Frank Joseph Arturi, Erik Richard Kareliussen, Austin Marek Salkind
  • Publication number: 20220202583
    Abstract: A glenoid implant includes a body, a plurality of fins, a collet, and a plug. The body has a central aperture therethrough and a plurality of slots. Each of the plurality of fins are coupled with a respective one of the plurality of slots of the boss of the body such that each of the plurality of fins is configured to move from a first generally inward position towards a second generally outward position. The collet including an interior threaded bore and a plurality of deflectable arms. The plug includes a threaded portion and a tip portion configured to engage with and cause the plurality of deflectable arms of the collet to move and cause the plurality of fins to move from the first generally inward position towards the second generally outward position, thereby aiding in securing the body to a scapula of a patient.
    Type: Application
    Filed: April 24, 2020
    Publication date: June 30, 2022
    Inventors: Stuart L. Axelson, Jr., Catherine Ann Hamann, Katherine Victoria Ackley, Grant Lieder Tribble, Shreyas Sriram
  • Publication number: 20220142789
    Abstract: A glenoid implant system includes an anchoring structure and a glenoid liner. The anchoring structure includes a base, a wall, and a ledge. The wall extends from a first surface of the base. The ledge extends generally along at least a portion of a first side of the wall, thereby forming an undercut. The wall has a slot formed in a second opposing side of the wall. The glenoid liner is configured to be removably coupled to the anchoring structure. The glenoid liner has a cap portion, a main body, and a deflectable finger. The main body extends from the cap portion and includes a lip configured to engage the undercut of the anchoring structure. The deflectable finger extends from the cap portion. The deflectable finger has a protrusion configured to engage the slot of the anchoring structure to aid in securing the glenoid liner to the anchoring structure.
    Type: Application
    Filed: April 24, 2020
    Publication date: May 12, 2022
    Inventors: Stuart L. Axelson, Jr., Christina Marie Risley, Samantha Jorge Rogers, Frank Joseph Arturi, Erik Richard Kareliussen, Austin Marek Salkind
  • Patent number: 11318027
    Abstract: Disclosed herein are systems and methods for bone preparation with designed areas having accurate tolerance profiles to enable improved initial fixation and stability for cementless implants and to improve long-term bone ingrowth/ongrowth to an implant. One method includes preparing a bone surface to receive a prosthetic implant thereon by resecting the bone surface using a first cutting path to create a first resected region and resecting the bone of the patient using a second cutting path to create a second resected region at least partially overlapping the first resection region. The second cutting path is different than the first cutting path and either manual or robotic cutting tools can be used for creating the first and second resected regions.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: May 3, 2022
    Assignee: Stryker Corporation
    Inventors: Stuart L. Axelson, Jr., Donald W. Malackowski, John Michael Stuart
  • Patent number: 11045209
    Abstract: A dynamic trialing method generally allows a surgeon to perform a preliminary bone resection on the distal femur according to a curved or planar resection profile. With the curved resection profile, the distal-posterior femoral condyles may act as a femoral trial component after the preliminary bone resection. This may eliminate the need for a separate femoral trial component, reducing the cost and complexity of surgery. With the planar resection profile, shims or skid-like inserts that correlate to the distal-posterior condyles of the final insert may be attached to the distal femur after the preliminary bone resection to facilitate intraoperative trialing. The method and related components may also provide the ability of a surgeon to perform iterative intraoperative kinematic analysis and gap balancing, providing the surgeon the ability to perform necessary ligament and/or other soft tissue releases and fine tune the final implant positions based on data acquired during the surgery.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 29, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Stuart L. Axelson, Jr., Emily Hampp, John R. Fossez
  • Publication number: 20210177434
    Abstract: A dynamic trialing method generally allows a surgeon to perform a preliminary bone resection on the distal femur according to a curved or planar resection profile. With the curved resection profile, the distal-posterior femoral condyles may act as a femoral trial component after the preliminary bone resection. This may eliminate the need for a separate femoral trial component, reducing the cost and complexity of surgery. With the planar resection profile, shims or skid-like inserts that correlate to the distal-posterior condyles of the final insert may be attached to the distal femur after the preliminary bone resection to facilitate intraoperative trialing. The method and related components may also provide the ability of a surgeon to perform iterative intraoperative kinematic analysis and gap balancing, providing the surgeon the ability to perform necessary ligament and/or other soft tissue releases and fine tune the final implant positions based on data acquired during the surgery.
    Type: Application
    Filed: February 23, 2021
    Publication date: June 17, 2021
    Inventors: Stuart L. Axelson, JR., Emily Hampp, John R. Fossez
  • Publication number: 20210085473
    Abstract: Disclosed herein are patellar implants and methods to prepare bone for receiving the same. The patellar implant may include an articulating surface with an elliptically shaped median ridge. The anterior surface of the patellar implant may have a non-planar surface to engage with a resected natural patella. The non-planar surface may allow for varying thickness of the patellar implant. The patellar implant may include dual attachment features to secure patellar implant to a resected patella by onlay and inlay techniques. A method for attaching a patellar implant to a patella may include onlay and inlay techniques and may further include bone preparation at the implant-bone interface.
    Type: Application
    Filed: December 8, 2020
    Publication date: March 25, 2021
    Applicant: Howmedica Osteonics Corp.
    Inventors: Stuart L. Axelson, JR., Robert Davignon, Sanghita Bhattacharya, Michael C. Ferko, Peter Wellings
  • Patent number: 10893948
    Abstract: Disclosed herein are patellar implants and methods to prepare bone for receiving the same. The patellar implant may include an articulating surface with an elliptically shaped median ridge. The anterior surface of the patellar implant may have a non-planar surface to engage with a resected natural patella. The non-planar surface may allow for varying thickness of the patellar implant. The patellar implant may include dual attachment features to secure patellar implant to a resected patella by onlay and inlay techniques. A method for attaching a patellar implant to a patella may include onlay and inlay techniques and may further include bone preparation at the implant-bone interface.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: January 19, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Stuart L. Axelson, Jr., Robert Davignon, Sanghita Bhattacharya, Michael C. Ferko, Peter Wellings
  • Publication number: 20200275943
    Abstract: A method of performing surgery on a bone includes providing a robotically controlled bone preparation system and creating at least one hole in the bone with the robotically controlled bone preparation system prior to machining the bone. The bone hole aligns with a hole or a post in a guide for a manual cutting tool. If the robot fails during surgery, or if the surgeon does not wish to complete the procedure with the robot, the guide is attached to the bone after aligning the guide hole with the bone hole. The surgery is completed manually after the guide is attached to the bone, and the robot is not used after the guide is attached to the bone.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Lou Keppler, Sathiya Prabaharan, Emily Hampp, Stuart L. Axelson, JR., John R. Fossez
  • Patent number: 10687948
    Abstract: Disclosed herein are methods of designing and fabricating prosthetic implants having a sagittal wall in which at least a portion thereof traverses a non-linear path. A method of fabricating such a prosthetic implant may include generating a virtual bone model based on image information obtained from at least one bone, determining a proposed height of the prosthetic implant at a first location on the virtual bone model, determining a proposed resection depth into the at least one bone at the first location based at least in part on the proposed height of the prosthetic implant, and determining a curved resection path across a portion of the virtual bone model. The curved resection path may intersect the first location and the prosthetic implant may have a curved sagittal wall corresponding to the curved resection path.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: June 23, 2020
    Assignee: Mako Surgical Corp.
    Inventors: Robert Davignon, Michael C. Ferko, Stuart L. Axelson, Jr.
  • Publication number: 20200129301
    Abstract: A shoulder implant system includes a humeral stem implant, a humeral neck implant component, a humeral head implant component, and a glenoid implant. The humeral stem implant has a fin coupled to an exterior surface thereof that is inwardly tapered at an angle relative to vertical. At least a portion of the fin forms a wedge that directly engages and compacts cancellous bone during installation of the humeral stem implant. The humeral neck implant component is configured to be coupled with the humeral stem implant. The humeral head implant component is configured to be coupled to the humeral stem implant via the humeral neck implant component. The glenoid implant has a plurality of peripheral pegs. Each of the peripheral pegs has a plurality of sets of resilient lobes.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Inventors: Stuart L. Axelson, JR., Andrew M. Dickson, Kirstin Widding, Joseph Albert Abboud, Surena Namdari, Mark Alan Frankle, Jonathan C. Levy, Gerald Ross Williams, JR., Nathan Oliver Plowman, Richard Justin Hyer
  • Publication number: 20200113711
    Abstract: Disclosed herein are systems and methods for bone preparation with designed areas having accurate tolerance profiles to enable improved initial fixation and stability for cementless implants and to improve long-term bone ingrowth/ongrowth to an implant. One method includes preparing a bone surface to receive a prosthetic implant thereon by resecting the bone surface using a first cutting path to create a first resected region and resecting the bone of the patient using a second cutting path to create a second resected region at least partially overlapping the first resection region. The second cutting path is different than the first cutting path and either manual or robotic cutting tools can be used for creating the first and second resected regions.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Stuart L. Axelson, JR., Donald W. Malackowski, John Michael Stuart
  • Patent number: 10561501
    Abstract: A shoulder implant system includes a humeral stem implant, a humeral neck implant component, a humeral head implant component, and a glenoid implant. The humeral stem implant has a fin coupled to an exterior surface thereof that is inwardly tapered at an angle relative to vertical. At least a portion of the fin forms a wedge that directly engages and compacts cancellous bone during installation of the humeral stem implant. The humeral neck implant component is configured to be coupled with the humeral stem implant. The humeral head implant component is configured to be coupled to the humeral stem implant via the humeral neck implant component. The glenoid implant has a plurality of peripheral pegs. Each of the peripheral pegs has a plurality of sets of resilient lobes.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: February 18, 2020
    Assignee: Encore Medical, L.P.
    Inventors: Stuart L. Axelson, Jr., Andrew M. Dickson, Kirstin Widding, Joseph Albert Abboud, Surena Namdari, Mark Alan Frankle, Jonathan C. Levy, Gerald Ross Williams, Jr., Nathan Oliver Plowman, Richard Justin Hyer
  • Patent number: 10537441
    Abstract: Disclosed herein are systems and methods for bone preparation with designed areas having accurate tolerance profiles to enable improved initial fixation and stability for cementless implants and to improve long-term bone ingrowth/ongrowth to an implant. A method of preparing a bone surface to receive a prosthetic implant thereon having an articular surface and a bone contacting surface includes resecting the bone surface at a first location to create a first resected region having a first tolerance profile with a first cross-section, resecting the bone surface at a second location to create a second resected region having a second tolerance profile with a second cross-section less dense than the first cross-section, and contacting the bone contacting surface of the prosthetic implant with the first resected region.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: January 21, 2020
    Assignee: Stryker Corporation
    Inventors: Stuart L. Axelson, Jr., Donald W. Malackowski, John Michael Stuart
  • Publication number: 20190125541
    Abstract: Disclosed herein are patellar implants and methods to prepare bone for receiving the same. The patellar implant may include an articulating surface with an elliptically shaped median ridge. The anterior surface of the patellar implant may have a non-planar surface to engage with a resected natural patella. The non-planar surface may allow for varying thickness of the patellar implant. The patellar implant may include dual attachment features to secure patellar implant to a resected patella by onlay and inlay techniques. A method for attaching a patellar implant to a patella may include onlay and inlay techniques and may further include bone preparation at the implant-bone interface.
    Type: Application
    Filed: October 25, 2018
    Publication date: May 2, 2019
    Inventors: Stuart L. Axelson, JR., Robert Davignon, Sanghita Bhattacharya, Michael C. Ferko, Peter Wellings
  • Publication number: 20190117233
    Abstract: A dynamic trialing method generally allows a surgeon to perform a preliminary bone resection on the distal femur according to a curved or planar resection profile. With the curved resection profile, the distal-posterior femoral condyles may act as a femoral trial component after the preliminary bone resection. This may eliminate the need for a separate femoral trial component, reducing the cost and complexity of surgery. With the planar resection profile, shims or skid-like inserts that correlate to the distal-posterior condyles of the final insert may be attached to the distal femur after the preliminary bone resection to facilitate intraoperative trialing. The method and related components may also provide the ability of a surgeon to perform iterative intraoperative kinematic analysis and gap balancing, providing the surgeon the ability to perform necessary ligament and/or other soft tissue releases and fine tune the final implant positions based on data acquired during the surgery.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 25, 2019
    Inventors: Stuart L. Axelson, JR., Emily Hampp, John R. Fossez
  • Patent number: 10245151
    Abstract: Disclosed herein are orthopedic implants having a medial portion and a lateral portion, each of the medial and lateral portions having a proximal surface and a distal surface opposite the proximal surface. An intermediate portion joins the medial and lateral portions, wherein the intermediate portion has a proximal surface angled to the proximal surfaces of the medial and lateral portions about a longitudinal axis of the orthopedic implant. The proximal surface of the medial portion is stepped from the proximal surface of the lateral portion about the longitudinal axis. The proximal surfaces of the medial and lateral portions are configured to receive corresponding medial and lateral inserts.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: April 2, 2019
    Assignee: Stryker Corporation
    Inventors: Robert Davignon, Michael C. Ferko, Stuart L. Axelson, Jr.
  • Patent number: 10238403
    Abstract: Disclosed herein are systems and methods for performing total hip arthroplasty with patient-specific guides. Pre-operative images of a pelvic region of a patient are taken in order to predefine the structure of the guides and corresponding implants. From the obtained image data an insertional vector for implanting an acetabular implant or component into an acetabulum of the patient is determined, wherein the insertional vector is coaxial with a polar axis of the acetabular component. Also from the obtained image data, a superior surface of the guides and implants can be shaped to match the acetabulum of the patient. A nub portion extending outwardly from the superior surface of the guides and implants is shaped to substantially match the shape of a fovea of the acetabulum. A guide portion of the guides forming a slot has a longitudinal axis coaxial with the determined insertional vector of a corresponding acetabular component.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: March 26, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: James V. Bono, Stuart L. Axelson, Jr., Adam Bastian
  • Patent number: 10194919
    Abstract: A dynamic trialing method generally allows a surgeon to perform a preliminary bone resection on the distal femur according to a curved or planar resection profile. With the curved resection profile, the distal-posterior femoral condyles may act as a femoral trial component after the preliminary bone resection. This may eliminate the need for a separate femoral trial component, reducing the cost and complexity of surgery. With the planar resection profile, shims or skid-like inserts that correlate to the distal-posterior condyles of the final insert may be attached to the distal femur after the preliminary bone resection to facilitate intraoperative trialing. The method and related components may also provide the ability of a surgeon to perform iterative intraoperative kinematic analysis and gap balancing, providing the surgeon the ability to perform necessary ligament and/or other soft tissue releases and fine tune the final implant positions based on data acquired during the surgery.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: February 5, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: Stuart L. Axelson, Jr., Emily Hampp, John R. Fossez