Patents by Inventor Stuart L. Soled

Stuart L. Soled has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9943829
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a median pore size of at least about 10 nm with a silylating agent to form an at least partially coated silica support, calcining said coated silica support to form a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support, and optionally contacting the treated silica support with an optional chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: April 17, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chuansheng Bai, Jean W. Beeckman, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Publication number: 20180002617
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: June 19, 2017
    Publication date: January 4, 2018
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Publication number: 20170291867
    Abstract: A process for ring hydrogenation of a benzenepolycarboxylic acid or derivative thereof, includes contacting a feed stream comprising the acid or derivative thereof with a hydrogen containing gas in the presence of a catalyst under hydrogenation conditions to produce a hydrogenated product, wherein the catalyst contains rhodium and ruthenium.
    Type: Application
    Filed: October 9, 2015
    Publication date: October 12, 2017
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Hans K. T. Goris
  • Patent number: 9708548
    Abstract: The invention relates to a method for hydroprocessing hydrocarbon feedstocks, said process comprising contacting a hydrocarbon feedstock under hydroprocessing conditions with a bulk catalyst composition comprising bulk metal particles that comprise at least one Group VIII non-noble metal, at least one Group VIB metal and nanoparticles. The bulk metal catalyst composition comprises bulk metal particles that may be prepared by a manufacturing process comprising the steps of combining in a reaction mixture (i) dispersible nanoparticles having a dimension of less than about 1 ?m upon being dispersed in a liquid, (ii) at least one Group VIII non-noble metal compound, (iii) at least one Group VIB metal compound, and (iv) a protic liquid; and reacting the at least one Group VIII non-noble metal compound and the at least one Group VIB metal in the presence of the nanoparticles.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: July 18, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stuart L. Soled, Sabato Miseo, Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Paul Joseph Maria Lebens, Frans Lodewijk Plantenga, Bob Gerardus Oogjen, Henk-Jan Tromp
  • Patent number: 9598645
    Abstract: Feedstocks containing biocomponent materials are coprocessed with mineral feeds using a Group VI metal catalyst prior to hydrodesulfurization of the feedstocks. The Group VI metal catalyst is optionally a physically promoted Group VI metal catalyst.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: March 21, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Patrick L. Hanks, Bradley R. Fingland, Stuart L. Soled, Sabato Miseo
  • Publication number: 20160304795
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 20, 2016
    Inventors: Michael P. LANCI, Stuart L. SOLED, Javier GUZMAN, Sabato MISEO, Thomas E. GREEN, Joseph E. BAUMGARTNER, Lei ZHANG, Christine E. KLIEWER, Lukasz KOZIOL, Kanmi MAO, Tracie L. OWENS, Gary P. SCHLEICHER
  • Publication number: 20160304792
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 20, 2016
    Inventors: Michael P. LANCI, Stuart L. SOLED, Javier GUZMAN, Sabato MISEO, Thomas E. GREEN, Joseph E. BAUMGARTNER, Lei ZHANG, Christine E. KLIEWER, Lukasz KOZIOL, Kanmi MAO, Tracie L. OWENS, Gary P. SCHLEICHER, Xiaochun XU
  • Publication number: 20160199814
    Abstract: A method of producing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a medium pore size of at least about 10 nm with an acid to produce a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support to produce a noble metal-containing silica support, and optionally contacting the noble metal-containing silica support with a chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as, phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 14, 2016
    Inventors: Chuansheng Bai, Jean W. Beeckman, Hans K.T. Goris, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Publication number: 20160193592
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a median pore size of at least about 10 nm with a silylating agent to form an at least partially coated silica support, calcining said coated silica support to form a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support, and optionally contacting the treated silica support with an optional chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 7, 2016
    Inventors: Chuansheng Bai, Jean W. Beeckman, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Patent number: 9382171
    Abstract: A process is described for producing a catalyst composition comprising an iridium component dispersed on a support. In the process, silica- o group to form an organic iridium complex on the support. The treated support is then heated in an oxidizing atmosphere at a temperature of about 325° C. to about 475° C. to partially decompose the organic metal complex on the support. The treated support is then heated in a reducing atmosphere at a temperature of about 350° C. to about 500° C. to convert the partially decomposed organic iridium complex into the desired iridium component.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: July 5, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jane C. Cheng
  • Publication number: 20160145511
    Abstract: Methods are provided for hydroprocessing a feed (such as hydrotreating, hydrocracking, or hydrofining a feed) to generate a product with a reduced or minimized aromatics content relative to the severity of the hydroprocessing conditions. In some types of hydroprocessing applications, it can be desirable to select the severity of hydroprocessing conditions to achieve a desired level of removal for sulfur, a desired level for removal of nitrogen, and/or a desired level for increasing the viscosity index of a feed. The severity for heteroatom removal and/or viscosity index uplift can also correspond to an amount of conversion of a feed to lower boiling point products, so the lowest severity conditions suitable for achieving a product quality can be desirable. By improving the aromatics saturation during hydroprocessing, the severity of subsequent aromatics saturation processes can be reduced.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 26, 2016
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Xiaochun Xu, Bradley R. Fingland, Keith Wilson, Doron Levin, Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Ajit B. Dandekar
  • Publication number: 20150353845
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Application
    Filed: May 18, 2015
    Publication date: December 10, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael P. Lanci, Stuart L. SOLED, Javier GUZMAN, Sabato MISEO, Thomas Elmer GREEN, Joseph Ernest BAUMGARTNER
  • Patent number: 9035107
    Abstract: In a process for the dehydrogenation of dehydrogenatable hydrocarbons, a feed comprising dehydrogenatable hydrocarbons is contacted with a catalyst comprising a support and a dehydrogenation component under dehydrogenation conditions effective to convert at least a portion of the dehydrogenatable hydrocarbons in the feed. The catalyst is produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 19, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stuart L. Soled, Edward A. Lemon, Joseph E. Baumgartner, Sabato Miseo, George H. Gamble
  • Patent number: 8969639
    Abstract: In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a dehydrogenation catalyst produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid. The contacting is conducted under conditions effective to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to benzene and to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to paraffins.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: March 3, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stuart L. Soled, Edward A. Lemon, Jr., Christine E. Kliewer, Tan-Jen Chen, Joseph E. Baumgartner, Sabato Miseo
  • Publication number: 20140374319
    Abstract: The precursor of a hydroprocessing catalyst is made by impregnating a metal oxide component comprising at least one metal from Group 6 of the Periodic Table and at least one metal from Groups 8-10 of the Periodic Table with an amide formed from a first organic compound containing at least one amine group, and a second organic compound containing at least one carboxylic acid group. Following impregnation heat treatment follows to form in situ generated unsaturation additional to that in the two organic compounds. The catalyst precursor is sulfided to form an active, sulfide hydroprocessing catalyst.
    Type: Application
    Filed: May 5, 2014
    Publication date: December 25, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Iulian Nistor, Partha Nandi, Javier Guzman, Doron Levin, Keith Wilson, Jacob Arie Bergweff, Ronald Jan Huiberts, Arnold Van Loevezijn
  • Publication number: 20140330058
    Abstract: A process is described for producing a catalyst composition comprising an iridium component dispersed on a support. In the process, silica-containing support is treated with an iridium compound and an organic compound comprising an amino group to form an organic iridium complex on the support. The treated support is then heated in an oxidizing atmosphere at a temperature of about 325° C. to about 475° C. to partially decompose the organic metal complex on the support. The treated support is then heated in a reducing atmosphere at a temperature of about 350° C. to about 500° C. to convert the partially decomposed organic iridium complex into the desired iridium component.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jane C. Cheng
  • Patent number: 8784647
    Abstract: In a process for producing a hydroprocessing catalyst, a particulate metal oxide composition comprising an oxide of at least one first metal selected from Group 6 of the Periodic Table of the Elements can be mixed with particles of a sulfide of at least one second metal selected from Groups 8 to 10 of the Periodic Table of the Elements to produce a particulate catalyst precursor. The particulate catalyst precursor can then be sulfided under conditions sufficient to at least partially convert the particulate catalyst precursor into a layered metal sulfide having defect sites associated with the second metal sulfide.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 22, 2014
    Assignee: ExxonMobil Research and Egineering Company
    Inventors: Chris E. Kliewer, Stuart L. Soled, Sabato Miseo, Jeffrey S. Beck
  • Patent number: 8722563
    Abstract: Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group, and (ii) a second organic compound separate from said first organic compound and containing at least one carboxylic acid group. A process for preparing the catalyst precursor composition is also described, as is sulfiding the bulk mixed metal oxide catalyst precursor composition to form a hydroprocessing catalyst.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: May 13, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Iulian Nistor, Pallassana S. Venkataraman, Chris E. Kliewer, Robert J. Chimenti, Javier Guzman, Gordon Kennedy, Doron Levin
  • Patent number: 8722564
    Abstract: Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group and at least 10 carbon atoms or (ii) a second organic compound containing at least one carboxylic acid group and at least 10 carbon atoms, but not both, wherein the reaction product contains additional unsaturated carbon atoms, relative to the first or second organic compound, wherein the metals of the catalyst precursor composition are arranged in a crystal lattice, and wherein the reaction product is not located within the crystal lattice. A process for preparing the catalyst precursor composition is also described, as is sulfiding the catalyst precursor composition to form a hydroprocessing catalyst.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: May 13, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Iulian Nistor, Pallassana S. Venkataraman, Chris E. Kliewer, Robert J. Chimenti, Javier Guzman, Gordon Kennedy, Doron Levin
  • Publication number: 20140027350
    Abstract: The invention relates to a method for hydroprocessing hydrocarbon feedstocks, said process comprising contacting a hydrocarbon feedstock under hydroprocessing conditions with a bulk catalyst composition comprising bulk metal particles that comprise at least one Group VIII non-noble metal, at least one Group VIB metal and nanoparticles. The bulk metal catalyst composition comprises bulk metal particles that may be prepared by a manufacturing process comprising the steps of combining in a reaction mixture (i) dispersible nanoparticles having a dimension of less than about 1 ?m upon being dispersed in a liquid, (ii) at least one Group VIII non-noble metal compound, (iii) at least one Group VIB metal compound, and (iv) a protic liquid; and reacting the at least one Group VIII non-noble metal compound and the at least one Group VIB metal in the presence of the nanoparticles.
    Type: Application
    Filed: December 2, 2008
    Publication date: January 30, 2014
    Inventors: Stuart L. Soled, Sabato Miseo, Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Paul Joseph Maria Lebens, Frans Lodewijk Plantenga, Bob Gerardus Oogjen, Hank JAn Tromp