Patents by Inventor Stuart Marshall Nemser

Stuart Marshall Nemser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230131883
    Abstract: A method for removing ethylene from the atmosphere surrounding an agricultural product that is sensitive to ethylene, which promotes climacteric ripening and senescence, is disclosed. The method uses a membrane for selective ethylene permeation and removal from a container that is used to store, transport, and preserve the agricultural product.
    Type: Application
    Filed: March 26, 2021
    Publication date: April 27, 2023
    Inventors: STUART MARSHALL NEMSER, SUDIPTO MAJUMDAR, NING SHANGGUAN
  • Publication number: 20210016231
    Abstract: This invention discloses a thin-film composite membrane and process for the separation of carbon dioxide from non-hydrophilic gases such as methane, hydrogen, and nitrogen. The thin-film composite membrane has a gas-separation layer and a nonporous high-diffusion-rate layer, and has carbon dioxide to non-hydrophilic gas selectivity that is greater than the intrinsic selectivity of the gas-separation layer alone.
    Type: Application
    Filed: March 28, 2019
    Publication date: January 21, 2021
    Inventors: Ning SHANGGUAN, Stuart Marshall NEMSER, Sudipto MAJUMDAR, Andrew Edward FEIRING
  • Publication number: 20200188842
    Abstract: Silver ionomers of fluorinated polymers are useful for separating alkenes from other compounds such as nitrogen, oxygen, carbon dioxide, and methane. In many instances the selectivities between the alkenes and other compounds are very high. These membranes are useful to recover alkenes and other gaseous compounds from processes in which an alkene is a starting material or product.
    Type: Application
    Filed: May 22, 2018
    Publication date: June 18, 2020
    Inventors: Kenneth Evan LOPRETE, Stuart Marshall NEMSER
  • Patent number: 6478852
    Abstract: A membrane separation process and apparatus for carrying out the process involves contacting a gas feed mixture with one side of a selectively gas permeable membrane and allowing the components to pass through the membrane to form a permeate composition in contact with the opposite side of the membrane and leave a retentate composition on the feed side of the membrane. The process includes introducing a sweep flow of feed gas into the permeate composition near the membrane at a rate effective to increase the enrichment of the retentate composition in the less preferentially permeable component of the feed mixture to a concentration much greater than is achieved without the sweep flow. This process is especially well suited to improve single stage membrane separation effectiveness so that the need for conventional multistage separations to achieve moderate to high purity retentate compositions can be obviated.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: November 12, 2002
    Assignee: CMS Technology Holdings, Inc.
    Inventors: Kevin Patrick Callaghan, Stuart Marshall Nemser
  • Patent number: 6221247
    Abstract: A filter useful for the ultrafiltration and microfiltration of aqueous suspensions includes a microporous membrane structure that has pores of size effective to reject particles in the range of about 0.01-10 &mgr;m. At least a portion of the membrane structure in contact with the suspension has a surface energy less than that of polytetrafluoroethylene. Low surface energy can be achieved by coating a microporous substrate with a substance such as fluorine substituted dioxole polymer. The filter has superior resistance to fouling by species suspended in the aqueous suspension and can continuously filter flow of such suspension in excess of 100 L/(m2−h) for more than 150 hours. The new filter is useful in many traditionally fouling prone ultrafiltration and microfiltration membrane applications such as the filtering of shipboard generated graywater waste.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: April 24, 2001
    Assignee: CMS Technology Holdings, Inc.
    Inventors: Stuart Marshall Nemser, George Alfred Cragg
  • Patent number: 6126721
    Abstract: A portable breathing air supply apparatus uses a membrane separation module to obtain oxygen enriched air from ambient air which is blown into the module by an electrically powered fan. Oxygen enriched air is withdrawn from the permeate side of the membrane by a vacuum pump and is stored in a reservoir while the user exhales. In a preferred mode, a conserver valve in a tube leading from the reservoir to the user's mouth or nose is triggered to feed the enriched air for a preselected duration after a sensor in the tube detects onset of inhalation. Power for the electrical components can be supplied by batteries. The portable apparatus is sufficiently compact and light to be transported by persons weakened by certain chronic breathing disorders, such as chronic obstructive pulmonary disease and emphysema, and thus frees the user to roam for long periods away from a primary source of oxygen.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: October 3, 2000
    Assignee: Compact Membrane Systems, Inc.
    Inventors: Stuart Marshall Nemser, Louis Himelreich
  • Patent number: 5960777
    Abstract: A novel method of operating an internal combustion engine employs a selectively gas permeable membrane to provide either oxygen or nitrogen enriched air feed to beneficially affect engine performance. By feeding enriched air from a membrane unit such performance parameters as reduced NOx emissions, lean burn limit, engine power, and reduced cold start emissions can be enhanced relative to feeding ambient air. The selectively gas permeable membrane unit further includes a nonporous membrane (i) having an oxygen/nitrogen selectivity of at least 1.4 and a permeability to oxygen of at least 50 barrers; (ii) formed from an amorphous copolymer of perfluoro-2,2-dimethyl-1,3-dioxole; and (iii) being at a temperature below the glass transition temperature of the amorphous copolymer.A cylindrical module having many substantially parallel aligned small diameter hollow fiber membrane structures is ideally suited for carrying out the novel method.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: October 5, 1999
    Assignee: Compact Membrane Systems, Inc.
    Inventors: Stuart Marshall Nemser, Kevin Patrick Callaghan, Todd Colin Reppert
  • Patent number: 5914154
    Abstract: A process for placing an ultra thin layer of a non-porous gas permeable polymer continuously over an entire filter surface area allows the fabrication of compact, high flux, fouling resistant gas filters. The process involves contacting a dilute coating solution of gas permeable polymer in a solvent with one side of a microporous substrate. The pore size of the substrate is chosen for its ability to effectively filter the gas permeable polymer from the coating solution. Solvent of the coating solution is made to flow through the microporous substrate which causes an ultra thin layer of polymer to build up on the side of substrate. When a desired thickness of polymer is built up, the solution and solvent is removed and residual solvent is evaporated, preferably by passing a gas at high rate over the surface of the polymer layer.This process can be used to coat flat sheet and hollow fiber substrates.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: June 22, 1999
    Assignee: Compact Membrane Systems, Inc.
    Inventor: Stuart Marshall Nemser
  • Patent number: 5902747
    Abstract: A method of adding or removing a gas to or from a solution of the gas in a liquid involves transferring the gas between the liquid and another fluid through a membrane unit. The membrane unit includes a membrane which is (i) substantially impermeable to the solvent and having a permeability to oxygen of at least 100 barrers; (ii) formed from an amorphous copolymer of perfluoro-2,2-dimethyl-1,3-dioxole; and (iii) is maintained at a temperature below the glass transition temperature of the copolymer. The fluid can be another liquid or a gas. The novel method provides very high rates of gas transmission between liquids and permits gasifying liquids without resort to sparging bubbles through the liquid. The method thus can gasify liquid with superior efficiency and without excessive agitation due to bubbling.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: May 11, 1999
    Assignee: Compact Membrane Systems, Inc.
    Inventors: Stuart Marshall Nemser, Jay Olpin
  • Patent number: 5876604
    Abstract: A method of adding or removing a gas to or from a solution of the gas in a liquid involves transferring the gas between the liquid and another fluid through a membrane unit. The membrane unit includes a membrane which is (i) substantially impermeable to the solvent and having a permeability to oxygen of at least 100 barrers; (ii) formed from an amorphous copolymer of perfluoro-2,2-dimethyl-1,3-dioxole; and (iii) is maintained at a temperature below the glass transition temperature of the copolymer. The fluid can be another liquid or a gas. The novel method provides very high rates of gas transmission between liquids and permits gasifying liquids without resort to sparging bubbles through the liquid. The method thus can gasify liquid with superior efficiency and without excessive agitation due to bubbling.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: March 2, 1999
    Assignee: Compact Membrane Systems, Inc
    Inventors: Stuart Marshall Nemser, Jay Olpin
  • Patent number: 5639819
    Abstract: A mouldable reinforced polyamide composition comprising;(a) a polyamide consisting essentially of between about 0.5 and about 99.5 mol. % of aliphatic diamines having 4-12 carbon atoms and a complementary amount of 2-methyl-pentamethylene diamine copolymerized with aliphatic dicarboxylic acids having 6-12 carbon atoms; and(b) a filler in an amount of 0.5 to 200 parts by weight per 100 parts by weight of said polyamide. The polyamide has an RV greater than about 20. Related polyamides, especially in which the acid is 1,12-dodecanedioic acid, are also disclosed. The polyamides may be used in a wide variety of end-uses, including moulding, and exhibit excellent gloss compared with nylon 6,6.
    Type: Grant
    Filed: July 9, 1993
    Date of Patent: June 17, 1997
    Assignees: E. I. Du Pont de Nemours and Company, Du Pont Canada Inc.
    Inventors: Nicholas Farkas, David Neil Marks, Stuart Marshall Nemser