Patents by Inventor Stuart McKenzie

Stuart McKenzie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10270142
    Abstract: The present disclosure generally relates to a zinc air cell having an anode can made of a copper alloy. The anode can material reduces internal gassing within the electrochemical cell while being compatible with the internal chemistry of the anode and the alkaline electrolyte of the cell itself.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 23, 2019
    Assignee: ENERGIZER BRANDS, LLC
    Inventors: Rodney Stuart McKenzie, Jeffrey A. Poirier
  • Patent number: 9178119
    Abstract: A tunable color LED module comprises at least two sub-modules, each comprising an LED, a wavelength converting element (WCE) and a reflector cup. The total light emitted by the module comprises light generated from each LED and WCE and the module is configured to emit a total light having a predefined color chromaticity when activation properties of the LEDs are managed appropriately. The total light may have a broad white emission spectrum. The module combines the benefits of a low cost with uniform chromaticity properties in the far field, and offers long and controlled lifetime at the same time as flexibility and intelligence of tunable color chromaticity, Color Rendering Index (CRI) and intensity, either at manufacture or in an end user lighting application. A controlled LED module system comprises a control system for the managing activation properties of the LEDs in the sub-modules. Also described is a method of manufacture.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: November 3, 2015
    Assignee: PhotonStar LED Limited
    Inventor: James Stuart McKenzie
  • Patent number: 9142711
    Abstract: A tunable color LED module comprises at least two sub-modules, each comprising an LED, a wavelength converting element (WCE) and a reflector cup. The total light emitted by the module comprises light generated from each LED and WCE and the module is configured to emit a total light having a predefined color chromaticity when activation properties of the LEDs are managed appropriately. The total light may have a broad white emission spectrum. The module combines the benefits of a low cost with uniform chromaticity properties in the far field, and offers long and controlled lifetime at the same time as flexibility and intelligence of tunable color chromaticity, Color Rendering Index (CRI) and intensity, either at manufacture or in an end user lighting application. A controlled LED module system comprises a control system for the managing activation properties of the LEDs in the sub-modules. Also described is a method of manufacture.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: September 22, 2015
    Assignee: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob, Thomas David Matthew Lee
  • Patent number: 8987769
    Abstract: A novel submount for the efficient dissipation of heat away from a semiconductor light emitting device is described, which also maintains efficient electrical conductivity to the n and p contacts of the device by separating the thermal and electrical conductivity paths. The submount comprises at least the following constituent layers: a substrate (400) with thermally conductive properties; a deposited layer (402) having electrically insulating and thermally conducting properties disposed on at least a region of the substrate having a thickness of between 50 nm and 50 microns; a patterned electrically conductive circuit layer (404) disposed on at least a region of the deposited layer; and, a passivation layer at least partially overcoating a top surface of the submount. Also described is a light emitting module employing the substrate and a method of manufacture of the submount.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: March 24, 2015
    Assignee: Photonstar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Patent number: 8946741
    Abstract: A light emitting device having a plurality of light extracting elements defined on an upper surface of a semiconductor layer of the device, wherein the light extracting elements are adapted to couple light out of the device and to modify the far field emission profile of the device. Each element comprises an elongate region having a length at least twice its width and also greater than the effective dominant wavelength of light generated in the device. The elongate region extends orthogonal to the upper surface but not into the light emitting region of the device and may be oriented at an angle of less than 45° relative to one of a pair of basis axis defining a plane parallel to the semiconductor layer. Each elongate region is spatially separated from neighboring elongate regions such that it perturbs light generated in the light emitting region independently of the neighboring regions.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: February 3, 2015
    Assignee: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Publication number: 20140054625
    Abstract: A tunable colour LED module comprises at least two sub-modules, each comprising an LED, a wavelength converting element (WCE) and a reflector cup. The total light emitted by the module comprises light generated from each LED and WCE and the module is configured to emit a total light having a predefined colour chromaticity when activation properties of the LEDs are managed appropriately. The total light may have a broad white emission spectrum. The module combines the benefits of a low cost with uniform chromaticity properties in the far field, and offers long and controlled lifetime at the same time as flexibility and intelligence of tunable colour chromaticity, Colour Rendering Index (CRI) and intensity, either at manufacture or in an end user lighting application. A controlled LED module system comprises a control system for the managing activation properties of the LEDs in the sub-modules. Also described is a method of manufacture.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicant: PhotonStar LED Limited
    Inventor: James Stuart McKenzie
  • Publication number: 20140034991
    Abstract: A tunable colour LED module comprises at least two sub-modules, each comprising an LED, a wavelength converting element (WCE) and a reflector cup. The total light emitted by the module comprises light generated from each LED and WCE and the module is configured to emit a total light having a predefined colour chromaticity when activation properties of the LEDs are managed appropriately. The total light may have a broad white emission spectrum. The module combines the benefits of a low cost with uniform chromaticity properties in the far field, and offers long and controlled lifetime at the same time as flexibility and intelligence of tunable colour chromaticity, Colour Rendering Index (CRI) and intensity, either at manufacture or in an end user lighting application. A controlled LED module system comprises a control system for the managing activation properties of the LEDs in the sub-modules. Also described is a method of manufacture.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 6, 2014
    Applicant: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob, Thomas David Matthew Lee
  • Patent number: 8592842
    Abstract: A light emitting device (LED) employs one or more conductive multilayer reflector (CMR) structures. Each CMR is located between the light emitting region and a metal electrical contact region, thereby acting as low-loss, high-reflectivity region that masks the lossy metal contact regions away from the trapped waveguide modes. Improved optical light extraction via an upper surface is thereby achieved and a vertical conduction path is provided for current spreading in the device. In an example vertical, flip-chip type device, a CMR is employed between the metal bottom contact and the p-GaN flip chip layer. A complete light emitting module comprises the LED and encapsulant layers with a phosphor. Also provided is a method of manufacture of the LED and the module.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: November 26, 2013
    Assignee: PhotonStar LED Limited
    Inventor: James Stuart McKenzie
  • Patent number: 8556438
    Abstract: A tunable color LED module comprises at least two sub-modules, each comprising an LED (104), a wavelength converting element (WCE) (201, 112, 203) and a reflector cup. The total light emitted by the module comprises light generated from each LED and WCE and the module is configured to emit a total light having a predefined color chromaticity when activation properties of the LEDs are managed appropriately. The total light may have a broad white emission spectrum (106). The module combines the benefits of a low cost with uniform chromaticity properties in the far field, and offers long and controlled lifetime at the same time as flexibility and intelligence of tunable color chromaticity, Color Rendering Index (CRI) and intensity, either at manufacture or in an end user lighting application. A controlled LED module system comprises a control system for the managing activation properties of the LEDs in the sub-modules. Also described is a method of manufacture.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 15, 2013
    Assignee: Synoptics Limited
    Inventors: James Stuart McKenzie, Majd Zoorob, Thomas David Matthew Lee
  • Patent number: 8324647
    Abstract: A light emitting module with improved optical functionality and reduced thermal resistance is described, which comprises a light emitting device (LED), a wavelength converting (WC) element and an inorganic optically-transmissive thermally-conductive (OTTC) element. The WC element is capable of absorbing light generated from the LED at a specific wavelength and re-emitting light having a different wavelength. The re-emitted light and any unabsorbed light exits through at least one surface of the module. The OTTC is in physical contact with the WC element and at least partially located in the optical path of the light. The OTTC comprises one or more layers of inorganic material having a thermal conductivity greater than that of the WC element. As such, a compact unitary integrated module is provided with excellent thermal characteristics, which may be further enhanced when the OTTC provides a thermal barrier for vertical heat propagation through the module but not lateral propagation.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: December 4, 2012
    Assignee: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Patent number: 8324633
    Abstract: A light emitting module comprises a light emitting device (LED) mounted on a high thermal dissipation sub-mount, which performs the traditionally function of heat spread and the first part of the heat sinking. The sub-mount is a grown metal that is formed by an electroplating, electroforming, electrodeposition or electroless plating process, thereby minimizing thermal resistance at this stage. An electrically insulating and thermally conducting layer is at least partially disposed across the interface between the grown semiconductor layers of the light emitting device and the formed metal layers of the sub-mount to further improve the electrical isolation of the light emitting device from the grown sub-mount. The top surface of the LED is protected from electroplating or electroforming by a wax or polymer or other removable material on a temporary substrate, mold or mandrel, which can be removed after plating, thereby releasing the LED module for subsequent processing.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: December 4, 2012
    Assignee: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Patent number: 8309979
    Abstract: A light emitting device is provided having high luminous output while maintaining high wall plug efficiency, wherein the high thermal and electrical conductivity paths of the device are separated during the semiconductor wafer and die level manufacturing step. The device includes an electrical conducting mirror layer, which reflects at least 60% of generated light incident on it, and an isolation layer having electrical insulating properties and thermal conducting properties. A first electrode, which is not in contact with the main semiconductor layers of the device, is located on the mirror layer. A light emitting module, system and projection system incorporating the light emitting device are also described, as is a method of manufacture of the device.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: November 13, 2012
    Assignee: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Patent number: 8212273
    Abstract: A light emitting device comprises a novel low-loss array of conductive vias embedded in a dielectric multilayer stack, to act as an electrically-conductive, low-loss, high-reflectivity reflector layer (CVMR). In one example the CVMR stack is employed between a reflective metal bottom contact and a p-GaN semiconductor flip chip layer. The CVMR stack comprises at least (3) layers with at least (2) differing dielectric constants. The conductive vias are arranged such that localized and propagating surface plasmons associated with the structure reside within the electromagnetic stopband of the CVMR stack, which in turn inhibits trapped LED modes coupling into these plasmonic modes, thereby increasing the overall reflectivity of the CVM R. This technique improves optical light extraction and provides a vertical conduction path for optimal current spreading in a semiconductor light emitting device. A light emitting module and method of manufacture are also described.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: July 3, 2012
    Assignee: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Publication number: 20110204408
    Abstract: A novel submount for the efficient dissipation of heat away from a semiconductor light emitting device is described, which also maintains efficient electrical conductivity to the n and p contacts of the device by separating the thermal and electrical conductivity paths. The submount comprises at least the following constituent layers: a substrate (400) with thermally conductive properties; a deposited layer (402) having electrically insulating and thermally conducting properties disposed on at least a region of the substrate having a thickness of between 50 nm and 50 microns; a patterned electrically conductive circuit layer (404) disposed on at least a region of the deposited layer; and, a passivation layer at least partially overcoating a top surface of the submount. Also described is a light emitting module employing the substrate and a method of manufacture of the submount.
    Type: Application
    Filed: August 22, 2008
    Publication date: August 25, 2011
    Applicant: PHOTONSTAR LED LIMITED
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Publication number: 20110133654
    Abstract: A tunable colour LED module comprises at least two sub-modules, each comprising an LED (104), a wavelength converting element (WCE) (201, 112, 203) and a reflector cup. The total light emitted by the module comprises light generated from each LED and WCE and the module is configured to emit a total light having a predefined colour chromaticity when activation properties of the LEDs are managed appropriately. The total light may have a broad white emission spectrum (106). The module combines the benefits of a low cost with uniform chromaticity properties in the far field, and offers long and controlled lifetime at the same time as flexibility and intelligence of tunable colour chromaticity, Colour Rendering Index (CRI) and intensity, either at manufacture or in an end user lighting application. A controlled LED module system comprises a control system for the managing activation properties of the LEDs in the sub-modules. Also described is a method of manufacture.
    Type: Application
    Filed: July 30, 2009
    Publication date: June 9, 2011
    Applicant: PHOTONSTAR LED LIMITED
    Inventors: James Stuart McKenzie, Majd Zoorob, Thomas David Matthew Lee
  • Publication number: 20110101394
    Abstract: A light emitting module comprises a light emitting device (LED) mounted on a high thermal dissipation sub-mount, which performs the traditionally function of heat spread and the first part of the heat sinking. The sub-mount is a grown metal that is formed by an electroplating, electroforming, electrodeposition or electroless plating process, thereby minimising thermal resistance at this stage. An electrically insulating and thermally conducting layer is at least partially disposed across the interface between the grown semiconductor layers of the light emitting device and the formed metal layers of the sub-mount to further improve the electrical isolation of the light emitting device from the grown sub-mount. The top surface of the LED is protected from electroplating or electroforming by a wax or polymer or other removable material on a temporary substrate, mould or mandrel, which can be removed after plating, thereby releasing the LED module for subsequent processing.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 5, 2011
    Applicant: PHOTONSTAR LED LIMITED
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Publication number: 20110001157
    Abstract: A light emitting module with improved optical functionality and reduced thermal resistance is described, which comprises a light emitting device (LED), a wavelength converting (WC) element and an inorganic optically-transmissive thermally-conductive (OTTC) element. The WC element is capable of absorbing light generated from the LED at a specific wavelength and re-emitting light having a different wavelength. The re-emitted light and any unabsorbed light exits through at least one surface of the module. The OTTC is in physical contact with the WC element and at least partially located in the optical path of the light. The OTTC comprises one or more layers of inorganic material having a thermal conductivity greater than that of the WC element. As such, a compact unitary integrated module is provided with excellent thermal characteristics, which may be further enhanced when the OTTC provides a thermal barrier for vertical heat propagation through the module but not lateral propagation.
    Type: Application
    Filed: January 28, 2009
    Publication date: January 6, 2011
    Applicant: PHOTONSTAR LED LIMITED
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Publication number: 20100283075
    Abstract: A light emitting device having a plurality of light extracting elements defined on an upper surface of a semiconductor layer of the device, wherein the light extracting elements are adapted to couple light out of the device and to modify the far field emission profile of the device. Each element comprises an elongate region having a length at least twice its width and also greater than the effective dominant wavelength of light generated in the device. The elongate region extends orthogonal to the upper surface but not into the light emitting region of the device and may be oriented at an angle of less than 45° relative to one of a pair of basis axis defining a plane parallel to the semiconductor layer. Each elongate region is spatially separated from neighbouring elongate regions such that it perturbs light generated in the light emitting region independently of the neighbouring regions.
    Type: Application
    Filed: November 10, 2008
    Publication date: November 11, 2010
    Applicant: PHOTONSTAR LED LIMITED
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Publication number: 20100213485
    Abstract: A light emitting device comprises a novel low-loss array of conductive vias embedded in a dielectric multilayer stack, to act as an electrically-conductive, low-loss, high-reflectivity reflector layer (CVMR). In one example the CVMR stack is employed between a reflective metal bottom contact and a p-GaN semiconductor flip chip layer. The CVMR stack comprises at least (3) layers with at least (2) differing dielectric constants. The conductive vias are arranged such that localised and propagating surface plasmons associated with the structure reside within the electromagnetic stopband of the CVMR stack, which in turn inhibits trapped LED modes coupling into these plasmonic modes, thereby increasing the overall reflectivity of the CVM R. This technique improves optical light extraction and provides a vertical conduction path for optimal current spreading in a semiconductor light emitting device. A light emitting module and method of manufacture are also described.
    Type: Application
    Filed: July 18, 2008
    Publication date: August 26, 2010
    Applicant: PhotonStar LED Limited
    Inventors: James Stuart McKenzie, Majd Zoorob
  • Publication number: 20100201280
    Abstract: A light emitting device is provided having high luminous output while maintaining high wall plug efficiency, wherein the high thermal and electrical conductivity paths of the device are separated during the semiconductor wafer and die level manufacturing step. The device includes an electrical conducting mirror layer, which reflects at least 60% of generated light incident on it, and an isolation layer having electrical insulating properties and thermal conducting properties. A first electrode, which is not in contact with the main semiconductor layers of the device, is located on the mirror layer. A light emitting module, system and projection system incorporating the light emitting device are also described, as is a method of manufacture of the device.
    Type: Application
    Filed: September 12, 2008
    Publication date: August 12, 2010
    Applicant: PHOTONSTAR LED LIMITED
    Inventors: James Stuart McKenzie, Majd Zoorob