Patents by Inventor Stuart Rosenberg

Stuart Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10758730
    Abstract: Methods, devices and program products are provided for controlling a left univentricular (LUV) pacing therapy using an implantable medical device. Electrodes are configured to be located proximate to an atrial (A) site, left ventricular (LV) site and right ventricular (RV) site of the heart. A conduction different ? is determined based on i) an atrial-ventricular conduction delay (ARRV) between the A site and the RV site, and ii) an atrial-ventricular conduction delay (ARLV) between the A site and the LV site. A correction term ? is based on intrinsic inter-ventricular conduction delay (IVCD) between the LV and RV. An LV atrial-ventricular pacing (AVLV) delay is set based on the conduction difference ?, a pacing latency PL and the correction term ? and manages the LUV pacing therapy based on the AVLV delay, wherein the LUV pacing therapy lacks pacing in the RV.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: September 1, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Stuart Rosenberg, David Muller
  • Patent number: 10737070
    Abstract: The present disclosure provides apparatuses and methods for navigating a medical device into the body of a patient during an intracoronary or other medical procedure. In many embodiments, the present disclosure includes the use of a guidewire managing assembly that may be used in combination with a guidewire that includes a medical positioning system sensor. This guidewire managing assembly and sensor enabled guidewire are used in combination with a medical positioning system to determine the position of a medical device, such as a catheter or catheter sheath, and specifically the tip of the catheter or catheter sheath, that is threaded over the guidewire during a procedure. The present disclosure further relates to methods of tracking a medical device, such as a catheter tip, inside the body of a subject during a procedure.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: August 11, 2020
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: Louis-Philippe Richer, Stuart Rosenberg, Jatin Relan, Kyungmoo Ryu
  • Publication number: 20200245886
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Application
    Filed: April 22, 2020
    Publication date: August 6, 2020
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 10729346
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: August 4, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20200237313
    Abstract: The present disclosure provides systems and methods for confirming cardiac events based on heart sounds. An implantable medical device includes a sensing component configured to acquire a signal, and a processing component communicatively coupled to the sensing component, the processing component configured to receive the signal from the sensing component, analyze the received signal to detect the presence or absence of at least one heart sound, and confirm whether an initial detection of a cardiac event is accurate based on the detected presence or absence of the at least one heart sound.
    Type: Application
    Filed: January 30, 2019
    Publication date: July 30, 2020
    Inventors: Jong Gill, Gene A. Bornzin, Stuart Rosenberg, Fujian Qu
  • Publication number: 20200188664
    Abstract: A computer implemented method for detecting pocket stability for an implantable cardiac monitor, including under control of one or more processors in the ICM, collecting impedance data over at least one cardiac cycle. The impedance data is processed to separate an impedance waveform that varies over the at least one cardiac cycle in a manner representative of cardiac functionality over the at least one cardiac cycle. A characteristic of interest is analyzed from the impedance waveform over the at least one cardiac cycle. A pocket stability state of the ICM is identified and recorded based on the analyzing operation.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: Jong Gill, Fujian Qu, Stuart Rosenberg
  • Publication number: 20200188678
    Abstract: Embodiments describe herein generally pertain to implantable medical device (IMDs), and methods for use therewith, that can be used to automatically switch an IMD from its normal operational mode to an MRI safe mode, and vice versa, within increased specificity. In certain embodiments, a controller of the IMD uses a magnetic field sensor to determine whether a first magnetic field condition is detected, and uses an accelerometer to determine whether a positional condition is detected. In response to the first magnetic field condition being detected, and the positional condition being detected, the controller can use the magnetic field sensor to determine whether a second magnetic field condition is detected, which differs from the first magnetic field condition. The controller can then cause the IMD to enter the MRI safe mode based at least in part on the first and second magnetic field conditions and the positional condition being detected.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Applicant: Pacesetter, Inc.
    Inventors: Xing Pei, Brad Lindevig, Stuart Rosenberg, Nima Badie
  • Patent number: 10668292
    Abstract: Embodiments describe herein generally pertain to implantable medical device (IMDs), and methods for use therewith, that can be used to automatically switch an IMD from its normal operational mode to an MRI safe mode, and vice versa, within increased specificity. In certain embodiments, a controller of the IMD uses a magnetic field sensor to determine whether a first magnetic field condition is detected, and uses an accelerometer to determine whether a positional condition is detected. In response to the first magnetic field condition being detected, and the positional condition being detected, the controller can use the magnetic field sensor to determine whether a second magnetic field condition is detected, which differs from the first magnetic field condition. The controller can then cause the IMD to enter the MRI safe mode based at least in part on the first and second magnetic field conditions and the positional condition being detected.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: June 2, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Xing Pei, Brad Lindevig, Stuart Rosenberg, Nima Badie
  • Publication number: 20200155023
    Abstract: A computer implemented method and system for declaring arrhythmias in cardiac activity are provided. The method and system are under control of one or more processors that are configured with specific executable instructions. The method and system obtain far field cardiac activity (CA) signals for a series of beats and builds an N-dimensional data set from data values for features of interest from the CA signals. The method and system utilize a manifold structure to map the N-dimensional data set, through nonlinear dimensional reduction, onto an M-dimensional data set and declares an atrial fibrillation (AFL) episode based on a relation between the M-dimensional data set and one or more AFL classification criteria.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Elnaz Lashghari, Stuart Rosenberg, Fujian Qu
  • Publication number: 20200139130
    Abstract: Systems and methods of performing cardio resynchronization therapy (CRT) on a patient heart include the use of a stimulation system having at least one processor, at least one memory, a pulse generator, a stimulating electrode disposed in proximity to a His bundle of the patient heart, and a sensing electrode adapted to sense electrical activity of the left ventricle (LV) of the patient heart. CRT is provided by applying, using the pulse generator and through the stimulating electrode, a His bundle pacing (HBP) impulse having a first impulse energy. The sensing electrode is then used to measure an LV activation time in response to the HBP impulse. At least one setting of the pulse generator is modified based on the LV activation time such that a subsequent HBP impulse may be provided by the pulse generator via the stimulating electrode using a modified impulse energy.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 7, 2020
    Inventors: Wenwen Li, Gene A. Bornzin, Nima Badie, Stuart Rosenberg, Luke C. McSpadden, Kyungmoo Ryu
  • Patent number: 10610120
    Abstract: A method of mapping arrhythmic activity, such as premature ventricular contraction (“PVC”) activity, using an electroanatomical mapping system includes defining at least two arrhythmia template signals. Electrophysiology data points, each including an electrophysiological signal, are collected. A morphological similarity between the electrophysiological signal and a first arrhythmia template signal is computed; if this exceeds a preset threshold, then the electrophysiology data point is added to a corresponding arrhythmia map. If it does not, a morphological similarity between the electrophysiological signal and a second arrhythmia template signal is computed. If this exceeds the preset threshold, then the electrophysiology data point is added to a corresponding arrhythmia map. If neither exceeds the preset threshold, then the electrophysiology data point can be used to establish an additional arrhythmia map by defining an additional arrhythmia template signal.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 7, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Craig Markovitz, Stuart Rosenberg
  • Patent number: 10589100
    Abstract: Methods and devices are is provided for controlling a pacing therapy utilizing left ventricular multi-point pacing (MPP). The method and device provide electrodes configured to be located proximate to an atrial (A) site, a right ventricular (RV) site and multiple left ventricular (LV) sites of the heart. The method and device utilizes one or more processors. The processors determine atrial-ventricular conduction delays (AVCD) between the A site and multiple corresponding LV sites and determines pacing latencies at the LV sites. The processors adjusts the AVCDs, based on the pacing latency at the corresponding LV sites, to form atrial-ventricular latency adjusted (ARPL) conduction delays for the corresponding LV sites, calculates interventricular pacing (VV) delays for combinations of the LV sites based on the corresponding ARPL conduction delays and manages pacing therapy, that utilizes left ventricular MPP, based on the VV delays for the corresponding LV sites.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: March 17, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Stuart Rosenberg, David Muller
  • Publication number: 20200077910
    Abstract: Methods and systems are provided for detecting arrhythmias in cardiac activity is provided. The method and systems are under control of one or more processors configured with specific executable instructions. The method and systems obtain a far field cardiac activity (CA) signal that includes a series of beats, the CA signal including paced events. The method and systems identify the paced events in the CA signals. The method and systems determine a score based on an amount of paced events and adjust at least one parameter of an atrial fibrillation (AF) detection process based on the score.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Fujian Qu, Stuart Rosenberg, Xing Pei, Carin Folman, Jennifer Rhude
  • Publication number: 20200046991
    Abstract: The present disclosure provides systems and methods for applying anti-tachycardia pacing (ATP) using subcutaneous implantable cardioverter-defibrillators (SICDs). An SICD implantable in a subject includes a case including a controller, and at least one conductive lead extending from the case. The at least one conductive lead includes a plurality of coil electrodes, wherein the SICD is configured, via the controller, to apply anti-tachycardia pacing (ATP) to the subject using the at least one conductive lead.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 13, 2020
    Inventors: Gene A. Bornzin, Xiaoyi Min, Wenwen Li, Stuart Rosenberg, Kyungmoo Ryu, Alexander Bornzin, Leyla Sabet, Shubha Asopa, Xing Pei
  • Publication number: 20200046245
    Abstract: A method and system are provided for detecting arrhythmias in cardiac activity. The method the method and system, under control of one or more processors configured with specific executable instructions, obtain cardiac activity (CA) signals for a series of beats, build a QRS-T template based on an ensemble of QRS complexes within the CA signals, and subtract the QRS-T template from the CA signals to obtain QRS-T scrubbed CA signals. The method and system determine an atrial flutter (AFL) timing feature within the QRS scrubbed CA signals, and declare an AFL episode based on a relation between the AFL timing feature and an AFL cluster criteria.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Fujian Qu, Gene A. Bornzin, Jong Gill, Stuart Rosenberg, Neha Malhotra
  • Publication number: 20200046982
    Abstract: A computer implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains cardiac activity (CA) signals at the electrodes of an implantable medical device (IMD) in connection multiple cardiac beats and with different IMD orientations relative to gravitational force. The method obtains acceleration signatures at a sensor of the IMD that are indicative of heart sounds generated during the cardiac beats. The method obtains device location information at the IMD, with respect to the gravitational force during the cardiac beats. The method groups the acceleration signatures associated with the first and second set of cardiac beats into the corresponding one of first and second posture bins based on the device location information.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 13, 2020
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Thanh Tieu, Bornzin Gene, Stuart Rosenberg
  • Publication number: 20190393648
    Abstract: A device to inhibit entanglement of catheter cables comprises a slip ring or a combined slip ring and fluid rotary joint. The device can include a servomechanism configured to power rotation of at least one of the slip ring and the fluid rotary joint. A detangling device for a cable plug configured to connect to a catheter handle comprises an outer cylinder configured to rotate relative to an inner cylinder while electrical connections between the inner and outer cylinders remain intact. A free rotary irrigation channel for a catheter handle inhibits entanglement of irrigation tubing.
    Type: Application
    Filed: December 27, 2017
    Publication date: December 26, 2019
    Inventors: Israel A. Byrd, Eric S. Olson, Louis-Philippe Richer, Chunlan Jiang, Kyungmoo Ryu, Stuart Rosenberg, Cyrille Casset, Hoda Razavi, Loell B. Moon
  • Publication number: 20190380610
    Abstract: A computer Implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains far field cardiac activity (CA) signals and applies a direction related responsiveness (DRR) filter to the CA signals to produce DRR filtered signals. The method compares a current sample from the CA signals to a prior sample from the DRR filtered signals to identify a direction characteristic of the CA signals and defines the DRR filter based on a timing constant that is set based on the direction characteristic identified. The method analyzes the CA signals in connection with the DRR filtered signals to identify a peak characteristic of the CA signals and determines peak to peak intervals between successive peak characteristic. The method detects at least one of noise or an arrhythmia based on the peak to peak intervals and records results of the detecting.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 19, 2019
    Inventors: Gene A. Bornzin, Fady Dawoud, Jong Gill, Stuart Rosenberg, Fujian Qu, Neha Malhotra
  • Publication number: 20190336083
    Abstract: Computer implemented methods and systems for detecting noise in cardiac activity are provided. The method and system obtain a far field cardiac activity (CA) data set that includes far field CA signals for a series of beats, overlay a segment of the CA signals with a noise search window, and identify turns in the segment of the CA signals. The method and system determine whether the turns exhibit a turn characteristic that exceed a turn characteristic threshold, declare the segment of the CA signals as a noise segment based on the determining operation, shift the noise search window to a next segment of the CA signal and repeat the identifying, determining and declaring operations; and modify the CA signals based on the declaring the noise segments.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Publication number: 20190336753
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 7, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin