Patents by Inventor Stuart Sneyd

Stuart Sneyd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8021600
    Abstract: A plant for the heat treatment of solids containing iron oxide. The plant includes a reactor including a fluidized bed reactor. The reactor includes a gas supply system disposed in the reactor, a stationary annular fluidized bed which at least partly surrounds the gas supply system, and a mixing chamber. The gas supply system is configured so that gas flowing through the gas supply system entrains solids from the stationary annular fluidized bed into the mixing chamber.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 20, 2011
    Assignee: Outotec Oyj
    Inventors: Andreas Orth, Martin Hirsch, Peter Weber, Stuart Sneyd, Dirk Nuber, Michael Stroeder
  • Publication number: 20100040512
    Abstract: A plant for the heat treatment of solids containing iron oxide. The plant includes a reactor including a fluidized bed reactor. The reactor includes a gas supply system disposed in the reactor, a stationary annular fluidized bed which at least partly surrounds the gas supply system, and a mixing chamber. The gas supply system is configured so that gas flowing through the gas supply system entrains solids from the stationary annular fluidized bed into the mixing chamber.
    Type: Application
    Filed: October 22, 2009
    Publication date: February 18, 2010
    Applicant: OUTOTEC OYJ
    Inventors: Andreas Orth, Martin Hirsch, Peter Weber, Stuart Sneyd, Dirk Nuber, Michael Stroeder
  • Patent number: 7625422
    Abstract: The present invention relates to a method and a plant for the heat treatment of solids containing iron oxide, in which fine-grained solids are heated to a temperature of 700 to 1150° C. in a fluidized bed reactor (8). To improve the utilization of energy, it is proposed to introduce a first gas or gas mixture from below through at least one gas supply tube (9) into a mixing chamber region (15) of the reactor (8), the gas supply tube (9) being at least partly surrounded by a stationary annular fluidized bed (12) which is fluidized by supplying fluidizing gas. The gas velocities of the first gas or gas mixture and of the fluidizing gas for the annular fluidized bed (12) are adjusted such that the Particle-Froude-Numbers in the gas supply tube (9) are between 1 and 100, in the annular fluidized bed (12) between 0.02 and 2, and in the mixing chamber (15) between 0.3 and 30.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: December 1, 2009
    Assignee: Outotec Oyj
    Inventors: Andreas Orth, Martin Hirsch, Peter Weber, Stuart Sneyd, Dirk Nuber, Michael Ströder
  • Publication number: 20070137435
    Abstract: The present invention relates to a method and a plant for the heat treatment of solids containing iron oxide, in which fine-grained solids are heated to a temperature of 700 to 1150° C. in a fluidized bed reactor (8). To improve the utilization of energy, it is proposed to introduce a first gas or gas mixture from below through at least one gas supply tube (9) into a mixing chamber region (15) of the reactor (8), the gas supply tube (9) being at least partly surrounded by a stationary annular fluidized bed (12) which is fluidized by supplying fluidizing gas. The gas velocities of the first gas or gas mixture and of the fluidizing gas for the annular fluidized bed (12) are adjusted such that the Particle-Froude-Numbers in the gas supply tube (9) are between 1 and 100, in the annular fluidized bed (12) between 0.02 and 2, and in the mixing chamber (15) between 0.3 and 30.
    Type: Application
    Filed: December 1, 2003
    Publication date: June 21, 2007
    Inventors: Andreas Orth, Martin Hirsch, Peter Weber, Stuart Sneyd, Dirk Nuber, Michael Stroder
  • Publication number: 20070079666
    Abstract: This invention relates to a process for reducing solids containing iron oxide, such as iron ore, in which fine-grained solids are heated and at least partly calcined in a pre-heating stage (2, 9). In a first fluidized-bed reactor (14) downstream of the preheating stage (2, 9), the solids are prereduced and reduced further in a second fluidized-bed reactor (16). Downstream of the second reactor (16) a briquetting stage (20) is provided, in which the solids are briquetted at a temperature above 500° C. To increase the energy efficiency of the process and improve the flowability of the solids in the briquetting stage (20), magnesite is added to the preheating stage (2, 9) together with the solids containing iron oxide, which magnesite is at least partly calcined in the preheating stage (2, 9) to obtain magnesium oxide. Furthermore, the invention relates to a corresponding plant.
    Type: Application
    Filed: July 16, 2004
    Publication date: April 12, 2007
    Inventors: Stuart Sneyd, Martin Hirsch, Dirk Nuber
  • Publication number: 20060228281
    Abstract: The present invention relates to a method for removing gaseous pollutants from exhaust gases, in which the gaseous pollutants react with a fine-grained reactant by forming solids in a fluidized-bed reactor (2), and to a corresponding plant. To achieve low pollutant concentrations in the clean gas with an almost stoichiometric consumption of reactant, it is proposed to introduce the exhaust gas from below through a preferably central gas supply tube (20) into a mixing chamber (21) of the reactor (2), the gas supply tube (20) being at least partly surrounded by a stationary annular fluidized bed (22) of reactant, which bed is fluidized by supplying fluidizing gas, and to adjust the the gas velocities of the exhaust gas and of the fluidizing gas for the annular fluidized bed (22) such that the Particle-Froude-Numbers in the gas supply tube (20) are between 1 and 100, in the annular fluidized bed (22) between 0.02 and 2, and in the mixing chamber (21) between 0.3 and 30.
    Type: Application
    Filed: November 14, 2003
    Publication date: October 12, 2006
    Inventors: Michael Ströder, Stuart Sneyd, Klaus Hasselwander
  • Patent number: 6666629
    Abstract: A process of continuously conveying granular solids from a first zone with a pressure of 4 to 16 bar through a descending line and via an ascending line to a second zone with a pressure which is lower than in the first zone by 3 to 15 bar, by means of a gaseous medium. To ensure that the pressure between two regions can be reduced at low cost and with little maintenance effort when continuously conveying granular solids, a gaseous medium is injected into a tube through an upwardly directed nozzle at the point where the granular solids are conveyed through a descending line into an ascending line.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: December 23, 2003
    Assignee: Outokumpu Oyj
    Inventors: Martin Hirsch, Stuart Sneyd, Lothar Formanek
  • Publication number: 20020146291
    Abstract: A process of continuously conveying granular solids from a first zone with a pressure of 4 to 16 bar through a descending line and via an ascending line to a second zone with a pressure which is lower than in the first zone by 3 to 15 bar, by means of a gaseous medium. To ensure that the pressure between two regions can be reduced at low cost and with little maintenance effort when continuously conveying granular solids, a gaseous medium is injected into a tube through an upwardly directed nozzle at the point where the granular solids are conveyed through a descending line into an ascending line.
    Type: Application
    Filed: April 2, 2002
    Publication date: October 10, 2002
    Applicant: OUTOKUMPU Oyj
    Inventors: Martin Hirsch, Stuart Sneyd, Lothar Formanek