Patents by Inventor Stuart Stephen Papworth Parkin

Stuart Stephen Papworth Parkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11804321
    Abstract: A device including a templating structure and a magnetic layer on the templating structure is described. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. Further, E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir, D includes at least 50 atomic percent of the at least one constituent. The templating structure is nonmagnetic at room temperature. The magnetic layer includes at least one of a Heusler compound and an L10 compound, the magnetic layer being in contact with the templating structure.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: October 31, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaewoo Jeong, Panagiotis Charilaos Filippou, Yari Ferrante, Chirag Garg, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Patent number: 11756578
    Abstract: A magnetic device and method for providing the magnetic device are disclosed. The magnetic device includes a multilayer structure and a magnetic layer. The multilayer structure includes alternating layers of A and E. A includes a first material. The first material includes at least one of Co, Ru, or Ir. The first material may include an IrCo alloy. E includes at least one other material that includes Al. The other material(s) may include an alloy selected from AlGa, AlSn, AlGe, AlGaGe, AlGaSn, AlGeSn, and AlGaGeSn. A composition of the multilayer structure is represented by A1-xEx, where x is at least 0.45 and not more than 0.55. The magnetic layer includes an Al-doped Heusler compound. The magnetic layer shares an interface with the multilayer structure.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: September 12, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaewoo Jeong, Sergey Faleev, Panagiotis Charilaos Filippou, Yari Ferrante, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Patent number: 11751486
    Abstract: A device including a templating structure and a magnetic layer is described. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The magnetic layer is on the templating structure and includes at least one of a Heusler compound and an L10 compound. The magnetic layer is in contact with the templating structure and being magnetic at room temperature.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: September 5, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaewoo Jeong, Panagiotis Charilaos Filippou, Yari Ferrante, Chirag Garg, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Patent number: 11665979
    Abstract: A method for providing a magnetic device and the magnetic device so provided are described. The magnetic device includes a magnetic layer having a surface. In some aspects, the magnetic layer is a free layer, a reference layer, or a top layer thereof. A tunneling barrier layer is deposited on the magnetic layer. At least a portion of the tunneling barrier layer adjacent to the magnetic layer is deposited at a deposition angle of at least thirty degrees from a normal to the surface of the magnetic layer. In some aspects, the deposition angle is at least fifty degrees.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: May 30, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaewoo Jeong, Mahesh G. Samant, Yari Ferrante, Panagiotis Charilaos Filippou, Chirag Garg, Stuart Stephen Papworth Parkin
  • Patent number: 11538987
    Abstract: A device including a first magnetic layer, a templating structure and a second magnetic layer is described. The templating structure is on the first magnetic layer. The second magnetic layer is on the templating structure. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The templating structure is nonmagnetic at room temperature. At least one of the first magnetic layer and the second magnetic layer includes at least one of a Heusler compound and an L10 compound.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: December 27, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaewoo Jeong, Panagiotis Charilaos Filippou, Yari Ferrante, Chirag Garg, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Publication number: 20220262555
    Abstract: A magnetic device and method for providing the magnetic device are disclosed. The magnetic device includes a multilayer structure and a magnetic layer. The multilayer structure includes alternating layers of A and E. A includes a first material. The first material includes at least one of Co, Ru, or Ir. The first material may include an IrCo alloy. E includes at least one other material that includes Al. The other material(s) may include an alloy selected from AlGa, AlSn, AlGe, AlGaGe, AlGaSn, AlGeSn, and AlGaGeSn. A composition of the multilayer structure is represented by A1-xEx, where x is at least 0.45 and not more than 0.55. The magnetic layer includes an Al-doped Heusler compound. The magnetic layer shares an interface with the multilayer structure.
    Type: Application
    Filed: May 12, 2021
    Publication date: August 18, 2022
    Inventors: Jaewoo Jeong, Sergey Faleev, Panagiotis Charilaos Filippou, Yari Ferrante, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Publication number: 20220165938
    Abstract: A device including a first magnetic layer, a templating structure and a second magnetic layer is described. The templating structure is on the first magnetic layer. The second magnetic layer is on the templating structure. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The templating structure is nonmagnetic at room temperature. At least one of the first magnetic layer and the second magnetic layer includes at least one of a Heusler compound and an L10 compound.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 26, 2022
    Inventors: Jaewoo Jeong, Panagiotis Charilaos Filippou, Yari Ferrante, Chirag Garg, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Publication number: 20220165469
    Abstract: A device including a templating structure and a magnetic layer on the templating structure is described. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. Further, E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir, D includes at least 50 atomic percent of the at least one constituent. The templating structure is nonmagnetic at room temperature. The magnetic layer includes at least one of a Heusler compound and an L10 compound, the magnetic layer being in contact with the templating structure.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 26, 2022
    Inventors: Jaewoo Jeong, Panagiotis Charilaos Filippou, Yari Ferrante, Chirag Garg, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Publication number: 20220165939
    Abstract: A device including a templating structure and a magnetic layer is described. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The magnetic layer is on the templating structure and includes at least one of a Heusler compound and an L10 compound. The magnetic layer is in contact with the templating structure and being magnetic at room temperature.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 26, 2022
    Inventors: Jaewoo Jeong, Panagiotis Charilaos Filippou, Yari Ferrante, Chirag Garg, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Publication number: 20210175416
    Abstract: A method for providing a magnetic device and the magnetic device so provided are described. The magnetic device includes a magnetic layer having a surface. In some aspects, the magnetic layer is a free layer, a reference layer, or a top layer thereof. A tunneling barrier layer is deposited on the magnetic layer. At least a portion of the tunneling barrier layer adjacent to the magnetic layer is deposited at a deposition angle of at least thirty degrees from a normal to the surface of the magnetic layer. In some aspects, the deposition angle is at least fifty degrees.
    Type: Application
    Filed: April 3, 2020
    Publication date: June 10, 2021
    Inventors: Jaewoo Jeong, Mahesh G. Samant, Yari Ferrante, Panagiotis Charilaos Filippou, Chirag Garg, Stuart Stephen Papworth Parkin
  • Patent number: 9590176
    Abstract: Electrolyte gating with ionic liquids is a powerful tool for inducing conducting phases in correlated insulators. An archetypal correlated material is VO2 which is insulating only at temperatures below a characteristic phase transition temperature. We show that electrolyte gating of epitaxial thin films of VO2 suppresses the metal-to-insulator transition and stabilizes the metallic phase to temperatures below 5 K even after the ionic liquid is completely removed. We provide compelling evidence that, rather than electrostatically induced carriers, electrolyte gating of VO2 leads to the electric field induced creation of oxygen vacancies, and the consequent migration of oxygen from the oxide film into the ionic liquid.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Stuart Stephen Papworth Parkin, Mahesh G. Samant
  • Patent number: 8936293
    Abstract: A device for use in the semiconductor industry includes a robotic arm whose end effector includes electromagnetic means to hold a substrate carrier. A pushing member can move independently of a flat, spatula-like portion of the device and is configured to exert force against the substrate carrier while the spatula-like portion is retracted from the substrate carrier, after the substrate carrier has been brought to its intended position. In this manner, the position of the substrate carrier is maintained at its intended position as the spatula-like portion is retracted.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Christopher O. Lada, Stuart Stephen Papworth Parkin, Mahesh Govind Samant
  • Publication number: 20150001655
    Abstract: A method of fabricating a spin-current switched magnetic memory element includes providing a wafer having a bottom electrode, forming a plurality of layers, such that interfaces between the plurality of layers are formed in situ, the plurality of layers includes a plurality of magnetic layers, at least one of the plurality of magnetic layers having a perpendicular magnetic anisotropy component and including a current-switchable magnetic moment, and at least one barrier layer formed adjacent to the plurality of magnetic layers, lithographically defining a pillar structure from the plurality of layers, and forming a top electrode on the pillar structure.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Jonathan Sun, Rolf Allenspach, Stuart Stephen Papworth Parkin, John Casimir Slonczewski, Bruce David Terris
  • Patent number: 8860105
    Abstract: A spin-current switched magnetic memory element includes a plurality of magnetic layers, at least one of the plurality of magnetic layers having a perpendicular magnetic anisotropy component and including a current-switchable magnetic moment, and at least one barrier layer formed adjacent to the plurality of magnetic layers. The plurality of magnetic layers includes at least one composite layer.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jonathan Zanhong Sun, Rolf Allenspach, Stuart Stephen Papworth Parkin, John Casimir Slonczewski, Bruce David Terris
  • Patent number: 8861262
    Abstract: A spin-current switchable magnetic memory element includes a plurality of magnetic layers including a perpendicular magnetic anisotropy component, at least one of the plurality of magnetic layers including an alloy of a rare-earth metal and a transition metal, and at least one barrier layer formed adjacent to at least one of the plurality of magnetic layers.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jonathan Zanhong Sun, Stuart Stephen Papworth Parkin
  • Publication number: 20140266391
    Abstract: Electrolyte gating with ionic liquids is a powerful tool for inducing conducting phases in correlated insulators. An archetypal correlated material is VO2 which is insulating only at temperatures below a characteristic phase transition temperature. We show that electrolyte gating of epitaxial thin films of VO2 suppresses the metal-to-insulator transition and stabilizes the metallic phase to temperatures below 5 K even after the ionic liquid is completely removed. We provide compelling evidence that, rather than electrostatically induced carriers, electrolyte gating of VO2 leads to the electric field induced creation of oxygen vacancies, and the consequent migration of oxygen from the oxide film into the ionic liquid.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stuart Stephen Papworth Parkin, Mahesh G. Samant
  • Patent number: 8687415
    Abstract: Magnetic wires that include two antiferromagnetically coupled magnetic regions show improved domain wall motion properties, when the domain walls are driven by pulses of electrical current. The magnetic regions preferably include Co, Ni, and Pt and exhibit perpendicular magnetic anisotropy, thereby supporting the propagation of narrow domain walls. The direction of motion of the domain walls can be influenced by the order in which the wire's layers are arranged.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stuart Stephen Papworth Parkin, Luc Thomas, See-Hun Yang
  • Patent number: 8673791
    Abstract: A shadow masking device for use in the semiconductor industry includes self-aligning mechanical components that permit shadow masks to be exchanged while maintaining precise alignment with the target substrate. The misregistration between any two of the various layers in the formed structure can be kept to less than 40 microns.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: David J. Altknecht, Robert E. Erickson, Christopher O. Lada, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Patent number: 8657352
    Abstract: A device for use in the semiconductor industry includes a robotic arm whose end effector includes at least two prongs designed to hold a substrate carrier. A pushing member located between the prongs can move independently of the prongs and is configured to exert force against the substrate carrier while the prongs are retracted from the substrate carrier, after the substrate carrier has been brought to its intended position. In this manner, the position of the substrate carrier is maintained at its intended position as the prongs are retracted. Each of the prongs may include a claw or gripping member for grasping the substrate carrier.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: February 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: David J. Altknecht, Robert E. Erickson, Christopher O. Lada, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Patent number: 8638601
    Abstract: Magnetic wires that include cobalt, nickel, and platinum layers show improved domain wall motion properties, when the domain walls are driven by pulses of electrical current. These wires exhibit perpendicular magnetic anisotropy, thereby supporting the propagation of narrow domain walls. The direction of motion of the domain walls can be influenced by the order in which the platinum and cobalt layers are arranged.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stuart Stephen Papworth Parkin, Luc Thomas, See-Hun Yang