Patents by Inventor Stuart Stubbs

Stuart Stubbs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11903225
    Abstract: A photodetector includes a first electrode; an interlayer disposed on the first electrode; a photoabsorbing layer disposed on the interlayer, the photoabsorbing layer having one or more charge transport materials, and a plurality of two-dimensional quantum dots (2D QDs) dispersed in the one or more charge transport material; and a second electrode disposed on the photoabsorbing layer. A heterostructure photodetector includes a first electrode; a first photoabsorbing layer disposed on the first electrode, the first photoabsorbing layer having a first photoabsorbing material; a second photoabsorbing layer disposed on the first photoabsorbing layer, the second photoabsorbing layer having a second photoabsorbing material; and a second electrode disposed on the second photoabsorbing layer.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: February 13, 2024
    Inventors: Nigel Pickett, Stuart Stubbs, Nathalie Gresty
  • Patent number: 11884853
    Abstract: A nanoparticle conjugate includes a quantum dot (QD) and a thermally activated delayed fluorescence (TADF) molecule bound to the QD. In some instances, the TADF molecule can be directly bound to a surface of the QD. In other instances, the TADF molecule can be indirectly bound to the QD via an interaction with one or more capping ligands disposed on a surface of the QD. Nanoparticle conjugates described herein can be incorporated into emissive layers of electroluminescent light-emitting diode devices to yield electroluminescent quantum dot-containing light-emitting diode (QD-LED) devices.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: January 30, 2024
    Assignee: KYULUX, INC.
    Inventors: Stuart Stubbs, Nathalie Gresty, James Harris, Yu Seok Yang, Shuo-Hsien Cheng, Ayataka Endo
  • Publication number: 20220216438
    Abstract: A photodetector includes a first electrode; an interlayer disposed on the first electrode; a photoabsorbing layer disposed on the interlayer, the photoabsorbing layer having one or more charge transport materials, and a plurality of two-dimensional quantum dots (2D QDs) dispersed in the one or more charge transport material; and a second electrode disposed on the photoabsorbing layer. A heterostructure photodetector includes a first electrode; a first photoabsorbing layer disposed on the first electrode, the first photoabsorbing layer having a first photoabsorbing material; a second photoabsorbing layer disposed on the first photoabsorbing layer, the second photoabsorbing layer having a second photoabsorbing material; and a second electrode disposed on the second photoabsorbing layer.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 7, 2022
    Inventors: Nigel Pickett, Stuart Stubbs, Nathalie Gresty
  • Publication number: 20220010203
    Abstract: A nanoparticle conjugate includes a quantum dot (QD) and a thermally activated delayed fluorescence (TADF) molecule bound to the QD. In some instances, the TADF molecule can be directly bound to a surface of the QD. In other instances, the TADF molecule can be indirectly bound to the QD via an interaction with one or more capping ligands disposed on a surface of the QD. Nanoparticle conjugates described herein can be incorporated into emissive layers of electroluminescent light-emitting diode devices to yield electroluminescent quantum dot-containing light-emitting diode (QD-LED) devices.
    Type: Application
    Filed: October 30, 2019
    Publication date: January 13, 2022
    Inventors: Stuart STUBBS, Nathalie GRESTY, James HARRIS, Yu Seok YANG, Shuo-Hsien CHENG, Ayataka ENDO
  • Publication number: 20210167295
    Abstract: Emissive layers for electroluminescent display devices are described herein. The emissive layer can include a two-dopant system having a population of quantum dots (QDs) and a population of molecules exhibiting thermally activated delayed fluorescence (TADF). In some instances, one or both of the QDs and TADF molecules can be disposed in a host matrix. In some instances, the QDs and TADF molecules can be disposed in separate host matrices. In some instances, an electroluminescent display device can include an emissive layer comprising a population of quantum dots (QDs) and a layer adjacent to the emissive layer, the adjacent layer comprising a population of molecules exhibiting thermally activated delayed fluorescence (TADF).
    Type: Application
    Filed: April 4, 2019
    Publication date: June 3, 2021
    Inventors: Stuart STUBBS, Nathalie GRESTY, James HARRIS, Nigel PICKETT, Zugang LIU, Ayataka ENDO, Chris BROWN
  • Publication number: 20210155849
    Abstract: An emissive layer of a top-emitting (TE) printed display comprises a combination of solution-processable nanocrystal quantum dots, thermally activated delayed fluorescent molecules, and a suitable host material along with both electron and hole charge transport materials sandwiched into a microcavity between a reflective bottom electrode and a transparent or semi-transparent top electrode. The electrodes may be reflective metals and the thickness of the emissive layers and charge transport layers may be tuned according to the required resonant wavelength along with the thickness of the top semi-transparent electrode to optimize the resonant condition and maximize the light output.
    Type: Application
    Filed: April 4, 2019
    Publication date: May 27, 2021
    Inventors: Stuart STUBBS, Chris BROWN
  • Publication number: 20210159438
    Abstract: An emissive layer of an electroluminescent device, such as an electroluminescent display device, includes a host matrix and a two-dopant system dispersed in the host matrix. The two-dopant system has a fluorescent emitter dopant and an emissive donor-assistant dopant. The emissive donor-assistant dopant can be a fluorescence donor-assistant dopant or a phosphorescence donor-assistant dopant. The physical distance between the fluorescent emitter dopant and the emissive donor-assistant dopant can be controlled by using various capping ligands, which are bound to a surface of the fluorescent emitter dopant.
    Type: Application
    Filed: April 5, 2019
    Publication date: May 27, 2021
    Inventors: Nigel PICKETT, James HARRIS, Nathalie GRESTY, Stuart STUBBS
  • Publication number: 20200067002
    Abstract: A photodetector includes a first electrode; an interlayer disposed on the first electrode; a photoabsorbing layer disposed on the interlayer, the photoabsorbing layer having one or more charge transport materials, and a plurality of two-dimensional quantum dots (2D QDs) dispersed in the one or more charge transport material; and a second electrode disposed on the photoabsorbing layer. A heterostructure photodetector includes a first electrode; a first photoabsorbing layer disposed on the first electrode, the first photoabsorbing layer having a first photoabsorbing material; a second photoabsorbing layer disposed on the first photoabsorbing layer, the second photoabsorbing layer having a second photoabsorbing material; and a second electrode disposed on the second photoabsorbing layer.
    Type: Application
    Filed: August 19, 2019
    Publication date: February 27, 2020
    Inventors: Nigel Pickett, Stuart Stubbs, Nathalie Gresty
  • Patent number: 10167545
    Abstract: An indium tin oxide film containing by weight about 90% In2O3 and about 10% SnO2 is prepared using a low-energy deposition sputter process on a substrate. The indium tin oxide film thus obtained has a carrier concentration on the order of 1020/cm3 and a carrier mobility greater than 30 cm2/Vs. The low carrier concentration results in an increased transmission in the near infra-red region, while the high carrier mobility results in good conductive properties.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: January 1, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventor: Stuart Stubbs
  • Publication number: 20180212092
    Abstract: An adhesive layer in a copper indium gallium selenide (CIGS) solar cell is provided between the main CIGS layer and molybdenum film to avoid delamination of the CIGS layer and may also act as an electrical modification to increase the charge collection and power conversion efficiency (PCE) of the device.
    Type: Application
    Filed: January 23, 2017
    Publication date: July 26, 2018
    Inventors: Zugang Liu, Stuart Stubbs, Stephen Whitelegg, Cary Allen
  • Publication number: 20170373263
    Abstract: An organic light-emitting diode with an inorganic two-dimensional (2D) EL active material may comprise a plurality of layers on a plastic or glass substrate. In addition to the EL layer, the device may comprise a hole injection layer, a hole transport layer/electron blocking layer, an electron transport layer/hole blocking layer, an electron injection layer, and optional buffer layers such as poly(methyl methacrylate) (PMMA) to help balance the charge injection into the 2D material and redistribute the electric field.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 28, 2017
    Inventors: Stuart Stubbs, Stephen Whitelegg, Nigel Pickett, Zugang Liu
  • Publication number: 20170306470
    Abstract: An indium tin oxide film containing by weight about 90% In2O3 and about 10% SnO2 is prepared using a low-energy deposition sputter process on a substrate. The indium tin oxide film thus obtained has a carrier concentration on the order of 1020/cm3 and a carrier mobility greater than 30 cm2/Vs. The low carrier concentration results in an increased transmission in the near infra-red region, while the high carrier mobility results in good conductive properties.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 26, 2017
    Inventor: Stuart Stubbs
  • Publication number: 20140283913
    Abstract: Photovoltaic (PV) devices and solution-based methods of making the same are described. The PV devices include a CIGS-type absorber layer formed on a molybdenum substrate. The molybdenum substrate includes a layer of low-density molybdenum proximate to the absorber layer. The presence of low-density molybdenum proximate to the absorber layer has been found to promote the growth of large grains of CIGS-type semiconductor material in the absorber layer.
    Type: Application
    Filed: November 8, 2013
    Publication date: September 25, 2014
    Applicant: Nanoco Technologies Ltd.
    Inventors: Stephen Whitelegg, Takashi Iwahashi, Paul Kirkham, Cary Allen, Zugang Liu, Stuart Stubbs, Jun Lin