Patents by Inventor Stuart W. Juengst

Stuart W. Juengst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200153808
    Abstract: Embodiments of systems and methods disclosed herein include an embedded secret provisioning system that is based on a shared-derivative mechanism. Embodiments of this mechanism use a trusted third-party topology, but only a single instance of a public-private key exchange is required for initialization. Embodiments of the system and methods are secure and any of the derived secret keys are completely renewable in untrusted environments without any reliance on asymmetric cryptography. The derived secrets exhibit zero knowledge attributes and the associated zero knowledge proofs are open and available for review. Embodiments of systems and methods can be implemented in a wide range of previously-deployed devices as well as integrated into a variety of new designs using minimal roots-of-trust.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Inventors: William V. Oxford, Gerald E. Woodcock, Stephen E. Smith, Roderick Schultz, Marcos Portnoi, Stuart W. Juengst, Charles T. Schad, Michael K. Eneboe, Alexander Usach, Keith Evans
  • Patent number: 10567362
    Abstract: Embodiments of systems and methods disclosed herein include an embedded secret provisioning system that is based on a shared-derivative mechanism. Embodiments of this mechanism use a trusted third-party topology, but only a single instance of a public-private key exchange is required for initialization. Embodiments of the system and methods are secure and any of the derived secret keys are completely renewable in untrusted environments without any reliance on asymmetric cryptography. The derived secrets exhibit zero knowledge attributes and the associated zero knowledge proofs are open and available for review. Embodiments of systems and methods can be implemented in a wide range of previously-deployed devices as well as integrated into a variety of new designs using minimal roots-of-trust.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: February 18, 2020
    Assignee: Rubicon Labs, Inc.
    Inventors: William V. Oxford, Gerald E. Woodcock, III, Stephen E. Smith, Roderick Schultz, Marcos Portnoi, Stuart W. Juengst, Charles T. Schad, Michael K. Eneboe, Alexander Usach, Keith Evans
  • Publication number: 20170366527
    Abstract: Embodiments of systems and methods disclosed herein include an embedded secret provisioning system that is based on a shared-derivative mechanism. Embodiments of this mechanism use a trusted third-party topology, but only a single instance of a public-private key exchange is required for initialization. Embodiments of the system and methods are secure and any of the derived secret keys are completely renewable in untrusted environments without any reliance on asymmetric cryptography. The derived secrets exhibit zero knowledge attributes and the associated zero knowledge proofs are open and available for review. Embodiments of systems and methods can be implemented in a wide range of previously-deployed devices as well as integrated into a variety of new designs using minimal roots-of-trust.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 21, 2017
    Inventors: William V. Oxford, Gerald E. Woodcock, III, Stephen E. Smith, Roderick Schultz, Marcos Portnoi, Stuart W. Juengst, Charles T. Schad, Michael K. Eneboe, Alexander Usach, Keith Evans
  • Publication number: 20170063544
    Abstract: Embodiments of systems and methods disclosed herein provide simple and effective methods for secure processes to share selected data with other processes and other memory locations, either secure or not, in a safe and secure manner. More specifically, in certain embodiments, systems and methods are disclosed that enable a secure data cache system to use one or more virtual machines to securely generate encryption keys based on information from multiple independent sources. In some embodiments, systems and methods are disclosed that provide protection from replay attacks by selectively changing the generated encryption keys.
    Type: Application
    Filed: August 25, 2016
    Publication date: March 2, 2017
    Inventors: William V. Oxford, Stephen E. Smith, Stuart W. Juengst