Patents by Inventor Stuart W. Wenzel

Stuart W. Wenzel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160150331
    Abstract: An ear tip apparatus for use with a hearing device is provided and comprises a malleable structure. The malleable structure is sized and configured for placement in an ear canal of a user. The malleable structure is deformable to allow an adjustable venting of the ear canal, thereby minimizing the occlusion effect. Methodology for adjusting a degree of venting of the ear canal is also provided, including the automatic adjustments. Adjusting the degree of venting may be done in response to one or more of detected feedback or an environmental cue.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Inventor: Stuart W. Wenzel
  • Patent number: 7675301
    Abstract: An electronic component is disclosed, having a plurality of microelectronic spring contacts mounted to a planar face of the component. Each of the microelectronic spring contacts has a contoured beam, which may be formed of an integral layer of resilient material deposited over a contoured sacrificial substrate, and comprises a base mounted to the planar face of the component, a beam connected to the base at a first end of the beam, and a tip positioned at a free end of the beam opposite to the base. The beam has an unsupported span between its free end and its base. The microelectronic spring contacts are advantageously formed by depositing a resilient material over a molded, sacrificial substrate. The spring contacts may be provided with various innovative contoured shapes. In various embodiments of the invention, the electronic component comprises a semiconductor die, a semiconductor wafer, a LGA socket, an interposer, or a test head assembly.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: March 9, 2010
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 7524194
    Abstract: Improved lithographic type microelectronic spring structures and methods are disclosed, for providing improved tip height over a substrate, an improved elastic range, increased strength and reliability, and increased spring rates. The improved structures are suitable for being formed from a single integrated layer (or series of layers) deposited over a molded sacrificial substrate, thus avoiding multiple stepped lithographic layers and reducing manufacturing costs. In particular, lithographic structures that are contoured in the z-direction are disclosed, for achieving the foregoing improvements. For example, structures having a U-shaped cross-section, a V-shaped cross-section, and/or one or more ribs running along a length of the spring are disclosed. The present invention additionally provides a lithographic type spring contact that is corrugated to increase its effective length and elastic range and to reduce its footprint over a substrate, and springs which are contoured in plan view.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: April 28, 2009
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 7458816
    Abstract: An interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is modified. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume).
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: December 2, 2008
    Assignee: FormFactor, Inc.
    Inventors: Gaetan L. Mathieu, Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 7245137
    Abstract: A test head assembly can include a probe card, which can include first contact areas. The test head assembly can also include a contactor, which can include second contact areas. An interposer can include first spring contact structures and second spring contact structures. The first spring contact structures can contact one of the first contact areas, and the second spring contact structures can contact one of the second contact areas. Ones of the first spring contact structures can be electrically connected through the interposer to ones of the second spring contact structures. One of the first spring contact structures can include a pair of contacts, both of which can extend from a first surface of the interposer to contact one of the first contact areas. Alternatively or additionally, one of the second spring contact structures can include a pair of contacts, both of which can extend form a second surface of the interposer to contact one of the second contact areas.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: July 17, 2007
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 7189077
    Abstract: Improved lithographic type microelectronic spring structures and methods are disclosed, for providing improved tip height over a substrate, an improved elastic range, increased strength and reliability, and increased spring rates. The improved structures are suitable for being formed from a single integrated layer (or series of layers) deposited over a molded sacrificial substrate, thus avoiding multiple stepped lithographic layers and reducing manufacturing costs. In particular, lithographic structures that are contoured in the z-direction are disclosed, for achieving the foregoing improvements. For example, structures having a U-shaped cross-section, a V-shaped cross-section, and/or one or more ribs running along a length of the spring are disclosed. The present invention additionally provides a lithographic type spring contact that is corrugated to increase its effective length and elastic range and to reduce its footprint over a substrate, and springs which are contoured in plan view.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: March 13, 2007
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 7131848
    Abstract: A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device in a coil pattern over the compliant pad to its end area, forming a helix. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. In an alternative embodiment, the pad is removed to leave a freestanding helical contact.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: November 7, 2006
    Assignee: FormFactor, Inc.
    Inventors: Scott E. Lindsey, Charles A. Miller, David M. Royster, Stuart W. Wenzel
  • Patent number: 7127811
    Abstract: A method of fabricating and using an interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is deformed. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume) resulting in the deformation of the interconnection element.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: October 31, 2006
    Assignee: FormFactor, Inc.
    Inventors: Gaetan L. Mathieu, Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 7005751
    Abstract: A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device over the compliant pad to its end area. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. A horizontal microelectronic spring contact and method of making the same are also disclosed. The horizontal spring contact has a rigid trace attached at a first end to a terminal of a substrate.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: February 28, 2006
    Assignee: FormFactor, Inc.
    Inventors: Igor Y. Khandros, Charles A. Miller, Stuart W. Wenzel
  • Patent number: 6948940
    Abstract: A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device in a coil pattern over the compliant pad to its end area, forming a helix. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. In an alternative embodiment, the pad is removed to leave a freestanding helical contact.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: September 27, 2005
    Assignee: FormFactor, Inc.
    Inventors: Scott E. Lindsey, Charles A. Miller, David M. Royster, Stuart W. Wenzel
  • Patent number: 6939474
    Abstract: A method for fabricating microelectronic spring structures is disclosed. In an initial step of the method, a layer of sacrificial material is formed over a substrate. Then, a contoured surface is developed in the sacrificial material, such as by molding the sacrificial material using a mold or stamp. The contoured surface provides a mold for at least one spring form, and preferably for an array of spring forms. If necessary, the sacrificial layer is then cured or hardened. A layer of spring material is deposited over the contoured surface of the sacrificial material, in a pattern to define at least one spring form, and preferably an array of spring forms. The sacrificial material is then at least partially removed from beneath the spring form to reveal at least one free-standing spring structure. A separate conducting tip is optionally attached to each resulting spring structure, and each structure is optionally plated or covered with an additional layer or layers of material, as desired.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: September 6, 2005
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 6888362
    Abstract: An electronic component is disclosed, having a plurality of microelectronic spring contacts mounted to a planar face of the component. Each of the microelectronic spring contacts has a contoured beam, which may be formed of an integral layer of resilient material deposited over a contoured sacrificial substrate, and comprises a base mounted to the planar face of the component, a beam connected to the base at a first end of the beam, and a tip positioned at a free end of the beam opposite to the base. The beam has an unsupported span between its free end and its base. The microelectronic spring contacts are advantageously formed by depositing a resilient material over a molded, sacrificial substrate. The spring contacts may be provided with various innovative contoured shapes. In various embodiments of the invention, the electronic component comprises a semiconductor die, a semiconductor wafer, a LGA socket, an interposer, or a test head assembly.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: May 3, 2005
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel
  • Publication number: 20040201074
    Abstract: A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device over the compliant pad to its end area. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. A horizontal microelectronic spring contact and method of making the same are also disclosed. The horizontal spring contact has a rigid trace attached at a first end to a terminal of a substrate.
    Type: Application
    Filed: April 10, 2003
    Publication date: October 14, 2004
    Applicant: FormFactor, Inc.
    Inventors: Igor Y. Khandros, Charles A. Miller, Stuart W. Wenzel
  • Publication number: 20040203262
    Abstract: A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device in a coil pattern over the compliant pad to its end area, forming a helix. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. In an alternative embodiment, the pad is removed to leave a freestanding helical contact.
    Type: Application
    Filed: April 10, 2003
    Publication date: October 14, 2004
    Applicant: FormFactor, Inc.
    Inventors: Scott E. Lindsey, Charles A. Miller, David M. Royster, Stuart W. Wenzel
  • Patent number: 6780001
    Abstract: A forming tool with one or more embossing tooth, and preferably, a plurality of such embossing teeth, arranged on a substantially planar substrate, is disclosed. Each embossing tooth is configured for forming a sacrificial layer to provide a contoured surface for forming a microelectronic spring structure. Each embossing tooth has a protruding area corresponding to a base of a microelectronic spring, and a sloped portion corresponding to a beam contour of a microelectronic spring. Numerous methods for making a forming tool are also disclosed. The methods include a material removal method, a molding method, a repetitive-stamping method, tang-bending methods, and segment-assembly methods.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: August 24, 2004
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 6720710
    Abstract: A microsized pump is set forth. It comprises a substrate which at least partially defines one or more walls of a longitudinally extending tunnel. The tunnel has a vibratable wall portion. A sonic energy generator is positioned in sonic energy transmitting relation to the vibratable wall portion. The sonic energy generator is adapted to generate elastic waves which travel along the longitudinal extension of the tunnel. The pump is useful for moving material along the tunnel whereby chemical and biological analysis and reactions can be carried out on a micro scale.
    Type: Grant
    Filed: January 6, 1997
    Date of Patent: April 13, 2004
    Assignee: Berkeley Microinstruments, Inc.
    Inventors: Stuart W. Wenzel, Benedict J. Costello
  • Publication number: 20040038560
    Abstract: A method of fabricating and using an interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is deformed. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume) resulting in the deformation of the interconnection element.
    Type: Application
    Filed: August 29, 2003
    Publication date: February 26, 2004
    Applicant: FormFactor, Inc.
    Inventors: Gaetan L. Mathieu, Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 6640432
    Abstract: A method of fabricating and using an interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is deformed. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume) resulting in the deformation of the interconnection element.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: November 4, 2003
    Assignee: FormFactor, Inc.
    Inventors: Gaetan L. Mathieu, Benjamin N. Eldridge, Stuart W. Wenzel
  • Publication number: 20030099737
    Abstract: A forming tool with one or more embossing tooth, and preferably, a plurality of such embossing teeth, arranged on a substantially planar substrate, is disclosed. Each embossing tooth is configured for forming a sacrificial layer to provide a contoured surface for forming a microelectronic spring structure. Each embossing tooth has a protruding area corresponding to a base of a microelectronic spring, and a sloped portion corresponding to a beam contour of a microelectronic spring. Numerous methods for making a forming tool are also disclosed. The methods include a material removal method, a molding method, a repetitive-stamping method, tang-bending methods, and segment-assembly methods.
    Type: Application
    Filed: February 27, 2001
    Publication date: May 29, 2003
    Applicant: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel
  • Publication number: 20020055282
    Abstract: An electronic component is disclosed, having a plurality of microelectronic spring contacts mounted to a planar face of the component. Each of the microelectronic spring contacts has a contoured beam, which may be formed of an integral layer of resilient material deposited over a contoured sacrificial substrate, and comprises a base mounted to the planar face of the component, a beam connected to the base at a first end of the beam, and a tip positioned at a free end of the beam opposite to the base. The beam has an unsupported span between its free end and its base. The microelectronic spring contacts are advantageously formed by depositing a resilient material over a molded, sacrificial substrate. The spring contacts may be provided with various innovative contoured shapes. In various embodiments of the invention, the electronic component comprises a semiconductor die, a semiconductor wafer, a LGA socket, an interposer, or a test head assembly.
    Type: Application
    Filed: June 13, 2001
    Publication date: May 9, 2002
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel