Patents by Inventor Stuart Wiesner

Stuart Wiesner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230043878
    Abstract: The casting alloy according to the invention is based on aluminum-iron-nickel and includes the following elements: iron 0.8 to 3.0% by weight nickel 0.1 to 3.5% by weight boron 40 to 300 ppm zinc 0-5% by weight tin 0-5% by weight copper 0-3% by weight manganese 0-1% by weight magnesium 0-0.6% by weight phosphorus 0-500 ppm Silicon 0-0.4%.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 9, 2023
    Inventor: Stuart Wiesner
  • Patent number: 11421305
    Abstract: A cast alloy including iron 0.8-3.0 wt. %, magnesium 0.01-9.0 wt. %, manganese 0-2.5 wt. %, beryllium 0-500 ppm, titanium 0-0.5 wt. %, silicon 0-0.8 wt. %, strontium 0-0.8 wt. %, phosphorus 0-500 ppm, copper 0-4 wt. %, zinc 0-10 wt. %, 0-0.5 wt. % of an element or a group of elements selected from the group consisting of chromium, nickel, molybdenum, zirconium, vanadium, hafnium, calcium, gallium and boron, and the remainder being aluminium and unavoidable impurities.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: August 23, 2022
    Inventor: Stuart Wiesner
  • Patent number: 10669615
    Abstract: An aluminium, magnesium and silicon-based die casting alloy having 5.0-7.0 wt. % magnesium, 1.5-7.0 wt. % silicon, 0.3-0.8 wt. % manganese, 0.03-0.5 wt. % iron, 0.01-0.4 wt. % molybdenum, 0.01-0.3 wt. % zirconium, 0-0.25 wt. % titanium, 0-0.25 wt. % strontium, 0-250 ppm phosphorus, 0-4 wt. % copper and 1-10 wt. % zinc, the remainder being aluminium and inevitable impurities.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: June 2, 2020
    Assignee: Rheinfelden Alloys GmbH & Co. KG
    Inventor: Stuart Wiesner
  • Publication number: 20190136350
    Abstract: An aluminium, magnesium and silicon-based die casting alloy having 5.0-7.0 wt. % magnesium, 1.5-7.0 wt. % silicon, 0.3-0.8 wt. % manganese, 0.03-0.5 wt. % iron, 0.01-0.4 wt. % molybdenum, 0.01-0.3 wt. % zirconium, 0-0.25 wt. % titanium, 0-0.25 wt. % strontium, 0-250 ppm phosphorus, 0-4 wt. % copper and 1-10 wt. % zinc, the remainder being aluminium and inevitable impurities.
    Type: Application
    Filed: May 2, 2016
    Publication date: May 9, 2019
    Inventor: Stuart Wiesner
  • Publication number: 20190119792
    Abstract: A cast alloy including iron 0.8-3.0 wt. %, magnesium 0.01-9.0 wt. %, manganese 0-2.5 wt. %, beryllium 0-500 ppm, titanium 0-0.5 wt. %, silicon 0-0.8 wt. %, strontium 0-0.8 wt. %, phosphorus 0-500 ppm, copper 0-4 wt. %, zinc 0-10 wt. %, 0-0.5 wt. % of an element or a group of elements selected from the group consisting of chromium, nickel, molybdenum, zirconium, vanadium, hafnium, calcium, gallium and boron, and the remainder being aluminium and unavoidable impurities.
    Type: Application
    Filed: May 2, 2016
    Publication date: April 25, 2019
    Inventor: Stuart Wiesner
  • Publication number: 20190119791
    Abstract: A die casting alloy on an aluminum-silicon base with a composition having 8.5 to 11.5 wt. % of silicon, 0.1 to 0.5 wt. % of magnesium, 0.3 to 0.8 wt. % of manganese, 0.02 to 0.5 wt. % of iron, 0.005 to 0.5 wt. % of zinc, 0.1 to 0.5 wt. % of copper, 0.02 to 0.3 wt. % of molybdenum, 0.02 to 0.3 wt. % of zirconium, 10 to 200 ppm of gallium and optionally at least one of 30 to 300 ppm of strontium, 5 to 30 ppm of sodium, 1 to 30 ppm of calcium, 5 to 250 ppm of phosphorus, 0.02 to 0.25 wt. % of titanium, and 3 to 50 ppm of boron with the remainder being aluminium and unavoidable impurities. The alloy can be produced with a recycling rate of 50%.
    Type: Application
    Filed: May 2, 2016
    Publication date: April 25, 2019
    Inventor: Stuart Wiesner
  • Patent number: 9663845
    Abstract: An aluminum alloy for components with increased rigidity, having a tensile yield strength Rp0.2>200 MPa and simultaneous elongation at break A>6% after a heat treatment, or a tensile yield strength Rp 0.2>120 MPa and simultaneously high elongation at break A>9% in the cast state, or >10% after a T6 heat treatment, in particular for structural and chassis components of a motor vehicle, containing 9 to 11.5 wt % silicon, 0.5 to 0.8 wt % manganese, 0.2 to 1.0 wt % magnesium, 0.1 to 1.0 wt % copper, 0.2 to 1.5 wt % zinc, 0.05 to 0.4 wt % zirconium, 0.01 to 0.4 wt % Cr, max. 0.2 wt % iron, max. 0.15 wt % titanium, 0.01 to 0.02 wt % strontium and the remainder as aluminum and production-related impurities with a maximum total of 0.5 wt %.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: May 30, 2017
    Assignees: Georg Fischer Druckguss GmbH & Co. KG, Georg Fischer GmbH & Co KG
    Inventors: Stuart Wiesner, Leif Speckert
  • Patent number: 9322086
    Abstract: Aluminum alloy for components having increased strength with a yield point Rp0.2>120 MPa and at the same time an elongation at break A>7% in the cast state, a yield point Rp0.2>200 MPa and at the same time an elongation at break A>6% after a T5 heat treatment or a yield point Rp0.2>200 MPa and at the same time a high elongation at break A>9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: April 26, 2016
    Assignees: Georg Fischer Druckguss GmbH & Co KG, Georg Fischer GmbH & Co KG
    Inventors: Leif Speckert, Stuart Wiesner
  • Publication number: 20150071815
    Abstract: An aluminum alloy for components with increased rigidity, having a tensile yield strength Rp0.2>200 MPa and simultaneous elongation at break A>6% after a heat treatment, or a tensile yield strength Rp 0.2>120 MPa and simultaneously high elongation at break A>9% in the cast state, or >10% after a T6 heat treatment, in particular for structural and chassis components of a motor vehicle, containing 9 to 11.5 wt % silicon, 0.5 to 0.8 wt % manganese, 0.2 to 1.0 wt % magnesium, 0.1 to 1.0 wt % copper, 0.2 to 1.5 wt % zinc, 0.05 to 0.4 wt % zirconium, 0.01 to 0.4 wt % Cr, max. 0.2 wt % iron, max. 0.15 wt % titanium, 0.01 to 0.02 wt % strontium and the remainder as aluminum and production-related impurities with a maximum total of 0.5 wt %.
    Type: Application
    Filed: April 3, 2013
    Publication date: March 12, 2015
    Inventors: Stuart Wiesner, Leif Speckert
  • Publication number: 20140140886
    Abstract: Aluminium alloy for components having increased strength with a yield point Rp0.2>120 MPa and at the same time an elongation at break A>7% in the cast state, a yield point Rp0.2>200 MPa and at the same time an elongation at break A>6% after a T5 heat treatment or a yield point Rp0.2>200 MPa and at the same time a high elongation at break A>9% after a T6 heat treatment, in particular for structural and chassis parts of a motor vehicle.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicants: Georg Fischer GmbH & Co KG, Georg Fischer Druckguss GmbH & Co KG
    Inventors: Leif Speckert, Stuart Wiesner