Patents by Inventor Stuart William Reid

Stuart William Reid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959906
    Abstract: A time-ordered series of measurements of a polymer made during translocation of the polymer through a Nanopore are analysed. The measurements are dependent on the identity of k-mers in the Nanopore, a k-mer bring k polymer units of the polymer, where k is a positive integer. The method involves deriving, from the series of measurements, a feature vector of time-ordered features representing characteristics of the measurements; and determining similarity between the derived feature vector and at least one other feature vector.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: April 16, 2024
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: Stuart William Reid, James Anthony Clarke, James White, Gavin Harper
  • Patent number: 11921103
    Abstract: A sequence of polymer units in a polymer (3), eg. DNA, is estimated from at least one series of measurements related to the polymer, eg. ion current as a function of translocation through a nanopore (1), wherein the value of each measurement is dependent on a k-mer being a group of k polymer units (4). A probabilistic model, especially a hidden Markov model (HMM), is provided, comprising, for a set of possible k-mers: transition weightings representing the chances of transitions from origin k-mers to destination k-mers; and emission weightings in respect of each k-mer that represent the chances of observing given values of measurements for that k-mer. The series of measurements is analysed using an analytical technique, eg. Viterbi decoding, that refers to the model and estimates at least one estimated sequence of polymer units in the polymer based on the likelihood predicted by the model of the series of measurements being produced by sequences of polymer units.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 5, 2024
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: Stuart William Reid, Gavin Harper, Clive Gavin Brown, James Anthony Clarke, Andrew John Heron
  • Patent number: 11898984
    Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: February 13, 2024
    Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
  • Publication number: 20230167494
    Abstract: A biochemical analysis system analyses polymers by taking measurements of a polymer from a sensor element comprising a nanopore during translocation of the polymer through the nanopore. When a polymer has partially translocated, the series of measurements is analysed using reference data derived from a reference sequence to provide a measure of similarity. Responsive to the measure of similarity, the sensor element may be selectively operated to eject the polymer and thereby make the nanopore available to receive a further polymer. Where the biochemical analysis system comprises an array of sensor elements and is takes measurements from sensor elements selected in a multiplexed manner, responsive to the measure of similarity, the biochemical analysis system ceases taking measurements from the currently selected sensor element and to starts taking measurements from a newly selected sensor element.
    Type: Application
    Filed: June 28, 2022
    Publication date: June 1, 2023
    Applicant: Oxford Nanopore Technologies PLC
    Inventors: Stuart William Reid, Gavin Harper, Clive Gavin Brown, Daniel John Turner, Andrew John Heron, Christopher James Wright
  • Patent number: 11401549
    Abstract: A biochemical analysis system analyses polymers by taking measurements of a polymer from a sensor element comprising a nanopore during translocation of the polymer through the nanopore. When a polymer has partially translocated, the series of measurements is analysed using reference data derived from a reference sequence to provide a measure of similarity. Responsive to the measure of similarity, the sensor element may be selectively operated to eject the polymer and thereby make the nanopore available to receive a further polymer. Where the biochemical analysis system comprises an array of sensor elements and is takes measurements from sensor elements selected in a multiplexed manner, responsive to the measure of similarity, the biochemical analysis system ceases taking measurements from the currently selected sensor element and to starts taking measurements from a newly selected sensor element.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: August 2, 2022
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: Stuart William Reid, Gavin Harper, Clive Gavin Brown, Daniel John Turner, Andrew John Heron, Christopher James Wright
  • Publication number: 20220213541
    Abstract: The invention resides in a method of determining a sequence of a target polymer, or part thereof, comprising polymer units comprising canonical and non-canonical polymer units. The method comprises taking a series of measurements of a signal relating to the target polymer wherein a measurement of the signal is dependent upon a plurality of polymer units, and wherein the polymer units of the target polymer modulate the signal, and wherein a non-canonical polymer unit modulates the signal differently from a corresponding canonical polymer unit. The series of measurements are analysed using a machine learning technique that attributes a measurement of a non-canonical polymer unit to being a measurement of a respective corresponding canonical polymer unit. The sequence of the target polymer, or part thereof, is determined from the analysed series of measurements. A non-canonical polymer unit identified from the analysis can be additionally or alternatively determined.
    Type: Application
    Filed: September 4, 2019
    Publication date: July 7, 2022
    Applicant: Oxford Nanopore Technologies Limited
    Inventors: Clive Gavin Brown, Timothy Lee Massingham, Stuart William Reid
  • Publication number: 20220064724
    Abstract: A target polynucleotide is expanded. In respect of each nucleotide in the target polynucleotide, the target polynucleotide comprises clock nucleotides and at least one signal nucleotide in a predetermined order. The clock nucleotides have a predetermined sequence common to each nucleotide in the target polynucleotide. The at least one signal nucleotide is characteristic of the identity of the respective nucleotide in the target polynucleotide. During translocation of the expanded polynucleotide through a nanopore, electrical measurements dependent on the polynucleotide within the pore are made, to derive an analysis signal. Clock signals derived from the clock nucleotides are identified. Relative to the positions of the identified clock signals, nucleotide signals derived from the least one signal nucleotide are derived to analyse the target polynucleotide.
    Type: Application
    Filed: July 7, 2021
    Publication date: March 3, 2022
    Applicant: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Gavin Harper
  • Publication number: 20220059187
    Abstract: Provided herein, in some embodiments, are methods of determining whether a target nucleic acid comprises a particular barcode sequence.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 24, 2022
    Applicant: Oxford Nanopore Technologies Limited
    Inventors: Stuart William Reid, Eoghan Donal Harrington
  • Patent number: 11085077
    Abstract: A target polynucleotide is expanded. In respect of each nucleotide in the target polynucleotide, the target polynucleotide comprises clock nucleotides and at least one signal nucleotide in a predetermined order. The clock nucleotides have a predetermined sequence common to each nucleotide in the target polynucleotide. The at least one signal nucleotide is characteristic of the identity of the respective nucleotide in the target polynucleotide. During translocation of the expanded polynucleotide through a nanopore, electrical measurements dependent on the polynucleotide within the pore are made, to derive an analysis signal. Clock signals derived from the clock nucleotides are identified. Relative to the positions of the identified clock signals, nucleotide signals derived from the least one signal nucleotide are derived to analyse the target polynucleotide.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: August 10, 2021
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Gavin Harper
  • Publication number: 20210079460
    Abstract: A biochemical analysis system analyses polymers by taking measurements of a polymer from a sensor element comprising a nanopore during translocation of the polymer through the nanopore. When a polymer has partially translocated, the series of measurements is analysed using reference data derived from a reference sequence to provide a measure of similarity. Responsive to the measure of similarity, the sensor element may be selectively operated to eject the polymer and thereby make the nanopore available to receive a further polymer. Where the biochemical analysis system comprises an array of sensor elements and is takes measurements from sensor elements selected in a multiplexed manner, responsive to the measure of similarity, the biochemical analysis system ceases taking measurements from the currently selected sensor element and to starts taking measurements from a newly selected sensor element.
    Type: Application
    Filed: May 12, 2020
    Publication date: March 18, 2021
    Applicant: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Gavin Harper, Clive Gavin Brown, Daniel John Turner, Andrew John Heron, Christopher James Wright
  • Patent number: 10689697
    Abstract: Analysis Of A Polymer A biochemical analysis system analyses polymers by taking measurements of a polymer from a sensor element comprising a nanopore during translocation of the polymer through the nanopore. When a polymer has partially translocated, the series of measurements is analysed using reference data derived from a reference sequence to provide a measure of similarity. Responsive to the measure of similarity, the sensor element may be selectively operated to eject the polymer and thereby make the nanopore available to receive a further polymer. Where the biochemical analysis system comprises an array of sensor elements and is takes measurements from sensor elements selected in a multiplexed manner, responsive to the measure of similarity, the biochemical analysis system ceases taking measurements from the currently selected sensor element and to starts taking measurements from a newly selected sensor element.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 23, 2020
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Gavin Harper, Clive Gavin Brown, Daniel John Turner, Andrew John Heron, Christopher James Wright
  • Publication number: 20200080966
    Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 12, 2020
    Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
  • Publication number: 20190310242
    Abstract: A sequence of polymer units in a polymer (3), eg. DNA, is estimated from at least one series of measurements related to the polymer, eg. ion current as a function of translocation through a nanopore (1), wherein the value of each measurement is dependent on a k-mer being a group of k polymer units (4). A probabilistic model, especially a hidden Markov model (HMM), is provided, comprising, for a set of possible k-mers: transition weightings representing the chances of transitions from origin k-mers to destination k-mers; and emission weightings in respect of each k-mer that represent the chances of observing given values of measurements for that k-mer. The series of measurements is analysed using an analytical technique, eg. Viterbi decoding, that refers to the model and estimates at least one estimated sequence of polymer units in the polymer based on the likelihood predicted by the model of the series of measurements being produced by sequences of polymer units.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 10, 2019
    Applicant: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Gavin Harper, Clive Brown, James Anthony Clarke, Andrew John Heron
  • Patent number: 10416117
    Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: September 17, 2019
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
  • Publication number: 20190203286
    Abstract: A target polynucleotide is expanded. In respect of each nucleotide in the target polynucleotide, the target polynucleotide comprises clock nucleotides and at least one signal nucleotide in a predetermined order. The clock nucleotides have a predetermined sequence common to each nucleotide in the target polynucleotide. The at least one signal nucleotide is characteristic of the identity of the respective nucleotide in the target polynucleotide. During translocation of the expanded polynucleotide through a nanopore, electrical measurements dependent on the polynucleotide within the pore are made, to derive an analysis signal. Clock signals derived from the clock nucleotides are identified. Relative to the positions of the identified clock signals, nucleotide signals derived from the least one signal nucleotide are derived to analyse the target polynucleotide.
    Type: Application
    Filed: October 17, 2018
    Publication date: July 4, 2019
    Applicant: Oxford Nanopore Technologies Limited
    Inventors: Stuart William Reid, Gavin Harper
  • Publication number: 20190187094
    Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.
    Type: Application
    Filed: March 6, 2019
    Publication date: June 20, 2019
    Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
  • Publication number: 20190154655
    Abstract: A time-ordered series of measurements of a polymer made during translocation of the polymer through a Nanopore are analysed. The measurements are dependent on the identity of k-mers in the Nanopore, a k-mer bring k polymer units of the polymer, where k is a positive integer. The method involves deriving, from the series of measurements, a feature vector of time-ordered features representing characteristics of the measurements; and determining similarity between the derived feature vector and at least one other feature vector.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 23, 2019
    Applicant: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, James Anthony Clarke, James White, Gavin Harper
  • Patent number: 10131943
    Abstract: A target polynucleotide is expanded. In respect of each nucleotide in the target polynucleotide, the target polynucleotide comprises clock nucleotides and at least one signal nucleotide in a predetermined order. The clock nucleotides have a predetermined sequence common to each nucleotide in the target polynucleotide. The at least one signal nucleotide is characteristic of the identity of the respective nucleotide in the target polynucleotide. During translocation of the expanded polynucleotide through a nanopore, electrical measurements dependent on the polynucleotide within the pore are made, to derive an analysis signal. Clock signals derived from the clock nucleotides are identified. Relative to the positions of the identified clock signals, nucleotide signals derived from the least one signal nucleotide are derived to analyze the target polynucleotide.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: November 20, 2018
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Gavin Harper
  • Publication number: 20180321188
    Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.
    Type: Application
    Filed: February 26, 2018
    Publication date: November 8, 2018
    Applicant: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera
  • Patent number: 9927398
    Abstract: To form a layer separating two volumes of aqueous solution, there is used an apparatus comprising elements defining a chamber, the elements including a body of non-conductive material having formed therein at least one recess opening into the chamber, the recess containing an electrode. A pre-treatment coating of a hydrophobic fluid is applied to the body across the recess. Aqueous solution, having amphiphilic molecules added thereto, is flowed across the body to cover the recess so that aqueous solution is introduced into the recess from the chamber and a layer of the amphiphilic molecules forms across the recess separating a volume of aqueous solution introduced into the recess from the remaining volume of aqueous solution.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: March 27, 2018
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Stuart William Reid, Terence Alan Reid, James Anthony Clarke, Steven Paul White, Gurdial Singh Sanghera