Patents by Inventor Styrmir Sigurjonsson

Styrmir Sigurjonsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946101
    Abstract: The invention provides improved methods, compositions, and kits for detecting ploidy of chromosome regions, e.g. for detecting cancer or a chromosomal abnormality in a gestating fetus. The methods can utilize a set of more than 200 SNPs that are found within haploblocks and can include analyzing a series of target chromosomal regions related to cancer or a chromosomal abnormality in a gestating fetus. Finally the method may use knowledge about chromosome crossover locations or a best fit algorithm for the analysis. The compositions may comprise more than 200 primers located within haplotype blocks known to show CNV.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: April 2, 2024
    Assignee: Natera, Inc.
    Inventors: Huseyin Eser Kirkizlar, Raheleh Salari, Styrmir Sigurjonsson, Bernhard Zimmermann, Allison Ryan, Naresh Vankayalapati
  • Patent number: 11939634
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 26, 2024
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Publication number: 20240068031
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Application
    Filed: September 7, 2023
    Publication date: February 29, 2024
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Matthew HILL, Bernhard ZIMMERMANN, George GEMELOS, Johan BANER, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
  • Publication number: 20240060124
    Abstract: Methods for non-invasive prenatal paternity testing are disclosed herein. The method uses genetic measurements made on plasma taken from a pregnant mother, along with genetic measurements of the alleged father, and genetic measurements of the mother, to determine whether or not the alleged father is the biological father of the fetus. This is accomplished by way of an informatics based method that can compare the genetic fingerprint of the fetal DNA found in maternal plasma to the genetic fingerprint of the alleged father.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 22, 2024
    Applicant: Natera, Inc.
    Inventors: Allison Ryan, Styrmir Sigurjonsson, Milena Banjevic, George Gemelos, Matthew Hill, Johan Baner, Matthew Rabinowitz, Zachary Demko
  • Publication number: 20230383348
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Application
    Filed: March 24, 2023
    Publication date: November 30, 2023
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Matthew HILL, Bernhard ZIMMERMANN, George GEMELOS, Johan BANER, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
  • Publication number: 20230332221
    Abstract: The present disclosure provides methods and compositions for sequencing nucleic acid molecules and identifying individual sample nucleic acid molecules using Molecular Index Tags (MITs). Furthermore, reaction mixtures, kits, and adapter libraries are provided.
    Type: Application
    Filed: December 5, 2022
    Publication date: October 19, 2023
    Applicant: Natera, Inc.
    Inventors: Bernhard ZIMMERMANN, Ryan SWENERTON, Matthew RABINOWITZ, Styrmir SIGURJONSSON, George GEMELOS, Apratim GANGULY, Himanshu SETHI
  • Publication number: 20230287497
    Abstract: The present disclosure provides methods for determining the status of an allograft within a transplant recipient from genotypic data measured from a mixed sample of DNA comprising DNA from both the transplant recipient and from the donor. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.
    Type: Application
    Filed: July 3, 2019
    Publication date: September 14, 2023
    Applicant: Natera, Inc.
    Inventors: Solomon MOSHKEVICH, Bernhard ZIMMERMANN, Tudor Pompiliu CONSTANTIN, Huseyin Eser KIRKIZLAR, Allison RYAN, Styrmir SIGURJONSSON, Felipe ACOSTA ARCHILA, Ryan SWENERTON
  • Patent number: 11746376
    Abstract: Methods for non-invasive prenatal paternity testing are disclosed herein. The method uses genetic measurements made on plasma taken from a pregnant mother, along with genetic measurements of the alleged father, and genetic measurements of the mother, to determine whether or not the alleged father is the biological father of the fetus. This is accomplished by way of an informatics based method that can compare the genetic fingerprint of the fetal DNA found in maternal plasma to the genetic fingerprint of the alleged father.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: September 5, 2023
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Matthew Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
  • Publication number: 20230242998
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Application
    Filed: February 20, 2023
    Publication date: August 3, 2023
    Applicant: Natera, Inc.
    Inventors: Joshua BABIARZ, Tudor Pompiliu CONSTANTIN, Lane A. EUBANK, George GEMELOS, Matthew Micah HILL, Huseyin Eser KIRKIZLAR, Matthew RABINOWITZ, Onur SAKARYA, Styrmir SIGURJONSSON, Bernhard ZIMMERMANN
  • Patent number: 11591649
    Abstract: Methods for non-invasive prenatal paternity testing are disclosed herein. The method uses genetic measurements made on plasma taken from a pregnant mother, along with genetic measurements of the alleged father, and genetic measurements of the mother, to determine whether or not the alleged father is the biological father of the fetus. This is accomplished by way of an informatics based method that can compare the genetic fingerprint of the fetal DNA found in maternal plasma to the genetic fingerprint of the alleged father.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: February 28, 2023
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Matthew Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
  • Publication number: 20230053752
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Application
    Filed: July 19, 2022
    Publication date: February 23, 2023
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Matthew Micah HILL, Bernhard ZIMMERMANN, Johan BANER, George GEMELOS, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
  • Publication number: 20230042405
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Application
    Filed: October 4, 2022
    Publication date: February 9, 2023
    Applicant: Natera, Inc.
    Inventors: Joshua BABIARZ, Tudor Pompiliu CONSTANTIN, Lane A. EUBANK, George GEMELOS, Matthew Micah HILL, Huseyin Eser KIRKIZLAR, Matthew RABINOWITZ, Onur SAKARYA, Styrmir SIGURJONSSON, Bernhard ZIMMERMANN
  • Publication number: 20220411875
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Application
    Filed: July 19, 2022
    Publication date: December 29, 2022
    Applicant: Natera, Inc.
    Inventors: Matthew RABINOWITZ, Matthew Micah HILL, Bernhard ZIMMERMANN, Johan BANER, George GEMELOS, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
  • Publication number: 20220403461
    Abstract: The invention provides improved methods, compositions, and kits for detecting ploidy of chromosome regions, e.g. for detecting cancer or a chromosomal abnormality in a gestating fetus. The methods can utilize a set of more than 200 SNPs that are found within haploblocks and can include analyzing a series of target chromosomal regions related to cancer or a chromosomal abnormality in a gestating fetus. Finally the method may use knowledge about chromosome crossover locations or a best fit algorithm for the analysis. The compositions may comprise more than 200 primers located within haplotype blocks known to show CNV.
    Type: Application
    Filed: June 21, 2022
    Publication date: December 22, 2022
    Applicant: Natera, Inc.
    Inventors: Huseyin Eser KIRKIZLAR, Raheleh SALARI, Styrmir SIGURJONSSON, Bernhard ZIMMERMANN, Allison RYAN, Naresh VANKAYALAPATI
  • Patent number: 11530454
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: December 20, 2022
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Patent number: 11530442
    Abstract: The present disclosure provides methods and compositions for sequencing nucleic acid molecules and identifying individual sample nucleic acid molecules using Molecular Index Tags (MITs). Furthermore, reaction mixtures, kits, and adapter libraries are provided.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: December 20, 2022
    Assignee: Natera, Inc.
    Inventors: Bernhard Zimmermann, Ryan Swenerton, Matthew Rabinowitz, Styrmir Sigurjonsson, George Gemelos, Apratim Ganguly, Himanshu Sethi
  • Patent number: 11525159
    Abstract: The present disclosure provides methods for determining the status of an allograft within a transplant recipient from genotypic data measured from a mixed sample of DNA comprising DNA from both the transplant recipient and from the donor. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: December 13, 2022
    Assignee: Natera, Inc.
    Inventors: Solomon Moshkevich, Bernhard Zimmermann, Tudor Pompiliu Constantin, Huseyin Eser Kirkizlar, Allison Ryan, Styrmir Sigurjonsson, Felipe Acosta Archila, Ryan Swenerton
  • Patent number: 11525162
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: December 13, 2022
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Matthew Micah Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
  • Patent number: 11519035
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: December 6, 2022
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Matthew Micah Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
  • Patent number: 11519028
    Abstract: The present disclosure provides methods and compositions for sequencing nucleic acid molecules and identifying individual sample nucleic acid molecules using Molecular Index Tags (MITs). Furthermore, reaction mixtures, kits, and adapter libraries are provided.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: December 6, 2022
    Assignee: Natera, Inc.
    Inventors: Bernhard Zimmermann, Ryan Swenerton, Matthew Rabinowitz, Styrmir Sigurjonsson, George Gemelos, Apratim Ganguly, Himanshu Sethi