Patents by Inventor Su-Hao LIU
Su-Hao LIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250133771Abstract: A method of forming a semiconductor device includes the following operations. A substrate is provided with a recess therein. An insulating layer is formed on a bottom of the recess. A seed layer is formed on the insulating layer. An epitaxial layer is grown in the recess from the seed layer.Type: ApplicationFiled: October 18, 2023Publication date: April 24, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yi-Syuan SIAO, Yu Tao Sun, Meng-Han Chou, Su-Hao Liu, Chi On Chui
-
Patent number: 12278141Abstract: Semiconductor devices and methods of manufacturing semiconductor devices are described herein. A method includes implanting neutral elements into a dielectric layer, an etch stop layer, and a metal feature, the dielectric layer being disposed over the etch stop layer and the metal feature being disposed through the dielectric layer and the etch stop layer. The method further includes using a germanium gas as a source for the neutral elements and using a beam current above 6.75 mA to implant the neutral elements.Type: GrantFiled: February 18, 2022Date of Patent: April 15, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Kuo-Ju Chen, Shih-Hsiang Chiu, Meng-Han Chou, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20250096041Abstract: A method includes forming a metallic feature, forming an etch stop layer over the metallic feature, implanting the metallic feature with a dopant, forming a dielectric layer over the etch stop layer, performing a first etching process to etch the dielectric layer and the etch stop layer to form a first opening, performing a second etching process to etch the metallic feature and to form a second opening in the metallic feature, wherein the second opening is joined with the first opening, and filling the first opening and the second opening with a metallic material to form a contact plug.Type: ApplicationFiled: November 21, 2024Publication date: March 20, 2025Inventors: Meng-Han Chou, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20250098206Abstract: A method includes forming a source/drain region, forming a dielectric layer over the source/drain region, and etching the dielectric layer to form a contact opening. The source/drain region is exposed to the contact opening. The method further includes depositing a dielectric spacer layer extending into the contact opening, etching the dielectric spacer layer to form a contact spacer in the contact opening, implanting a dopant into the source/drain region through the contact opening after the dielectric spacer layer is deposited, and forming a contact plug to fill the contact opening.Type: ApplicationFiled: December 4, 2024Publication date: March 20, 2025Inventors: Meng-Han Chou, Yi-Syuan Siao, Su-Hao Liu, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 12224327Abstract: Methods for improving sealing between contact plugs and adjacent dielectric layers and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a first dielectric layer over a conductive feature, a first portion of the first dielectric layer including a first dopant; a metal feature electrically coupled to the conductive feature, the metal feature including a first contact material in contact with the conductive feature; a second contact material over the first contact material, the second contact material including a material different from the first contact material, a first portion of the second contact material further including the first dopant; and a dielectric liner between the first dielectric layer and the metal feature, a first portion of the dielectric liner including the first dopant.Type: GrantFiled: August 7, 2023Date of Patent: February 11, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kuo-Ju Chen, Shih-Hsiang Chiu, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 12205994Abstract: A method of forming a semiconductor device includes forming a source/drain region and a gate electrode adjacent the source/drain region, forming a hard mask over the gate electrode, forming a bottom mask over the source/drain region, wherein the gate electrode is exposed, and performing a nitridation process on the hard mask over the gate electrode. The bottom mask remains over the source/drain region during the nitridation process and is removed after the nitridation. The method further includes forming a silicide over the source/drain region after removing the bottom mask.Type: GrantFiled: November 6, 2023Date of Patent: January 21, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Tsan-Chun Wang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 12199156Abstract: A method includes forming a source/drain region, forming a dielectric layer over the source/drain region, and etching the dielectric layer to form a contact opening. The source/drain region is exposed to the contact opening. The method further includes depositing a dielectric spacer layer extending into the contact opening, etching the dielectric spacer layer to form a contact spacer in the contact opening, implanting a dopant into the source/drain region through the contact opening after the dielectric spacer layer is deposited, and forming a contact plug to fill the contact opening.Type: GrantFiled: February 8, 2022Date of Patent: January 14, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Meng-Han Chou, Yi-Syuan Siao, Su-Hao Liu, Huicheng Chang, Yee-Chia Yeo
-
Patent number: 12183632Abstract: A method includes forming a metallic feature, forming an etch stop layer over the metallic feature, implanting the metallic feature with a dopant, forming a dielectric layer over the etch stop layer, performing a first etching process to etch the dielectric layer and the etch stop layer to form a first opening, performing a second etching process to etch the metallic feature and to form a second opening in the metallic feature, wherein the second opening is joined with the first opening, and filling the first opening and the second opening with a metallic material to form a contact plug.Type: GrantFiled: July 26, 2022Date of Patent: December 31, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Meng-Han Chou, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240413155Abstract: A method includes forming a fin structure including a first channel layer, a sacrificial layer, and a second channel layer over a substrate; forming a dummy gate structure across the fin structure; recessing the fin structure; epitaxially growing first source/drain epitaxial structures on opposite sides of the first channel layer; forming first dielectric layers to cover the first source/drain epitaxial structures, respectively; epitaxially growing second source/drain epitaxial structures on opposite sides of the second channel layer; removing the dummy gate structure and the sacrificial layer to form a gate trench between the first source/drain epitaxial structures and between the second source/drain epitaxial structures; and forming a metal gate structure in the gate trench. The second source/drain epitaxial structures are over the first dielectric layers, respectively.Type: ApplicationFiled: June 6, 2023Publication date: December 12, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chien-Yu LIN, Tien-Shun CHANG, Yi-Syuan SIAO, Su-Hao LIU, Chi On CHUI
-
Publication number: 20240395606Abstract: A connecting structure includes a first dielectric layer disposed over a substrate and a conductive feature, a doped dielectric layer disposed over the first dielectric layer, a first metal portion disposed in the first dielectric layer and in contact with the conductive feature, and a doped metal portion disposed over the first metal portion. The first metal portion and the doped metal portion include a same noble metal material. The doped dielectric layer and the doped metal portion include same dopants.Type: ApplicationFiled: July 31, 2024Publication date: November 28, 2024Inventors: Kuo-Ju Chen, Chun-Hsien Huang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240395871Abstract: In an embodiment, a device includes: a gate structure on a channel region of a substrate; a gate mask on the gate structure, the gate mask including a first dielectric material and an impurity, a concentration of the impurity in the gate mask decreasing in a direction extending from an upper region of the gate mask to a lower region of the gate mask; a gate spacer on sidewalls of the gate mask and the gate structure, the gate spacer including the first dielectric material and the impurity, a concentration of the impurity in the gate spacer decreasing in a direction extending from an upper region of the gate spacer to a lower region of the gate spacer; and a source/drain region adjoining the gate spacer and the channel region.Type: ApplicationFiled: July 31, 2024Publication date: November 28, 2024Inventors: Wei-Ting Chien, Wen-Yen Chen, Li-Ting Wang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang
-
Patent number: 12154949Abstract: In an embodiment, a device includes: a gate structure on a channel region of a substrate; a gate mask on the gate structure, the gate mask including a first dielectric material and an impurity, a concentration of the impurity in the gate mask decreasing in a direction extending from an upper region of the gate mask to a lower region of the gate mask; a gate spacer on sidewalls of the gate mask and the gate structure, the gate spacer including the first dielectric material and the impurity, a concentration of the impurity in the gate spacer decreasing in a direction extending from an upper region of the gate spacer to a lower region of the gate spacer; and a source/drain region adjoining the gate spacer and the channel region.Type: GrantFiled: May 15, 2023Date of Patent: November 26, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Ting Chien, Wen-Yen Chen, Li-Ting Wang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang
-
Publication number: 20240387661Abstract: Methods for improving sealing between contact plugs and adjacent dielectric layers and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a first dielectric layer over a conductive feature, a first portion of the first dielectric layer including a first dopant; a metal feature electrically coupled to the conductive feature, the metal feature including a first contact material in contact with the conductive feature; a second contact material over the first contact material, the second contact material including a material different from the first contact material, a first portion of the second contact material further including the first dopant; and a dielectric liner between the first dielectric layer and the metal feature, a first portion of the dielectric liner including the first dopant.Type: ApplicationFiled: July 26, 2024Publication date: November 21, 2024Inventors: Kuo-Ju Chen, Shih-Hsiang Chiu, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240387669Abstract: A method for fabricating an integrated circuit device includes forming first epitaxial stack comprising a first sacrificial layer and a first channel layer over a substrate; forming a second epitaxial stack comprising a second sacrificial layer and a second channel layer over the first epitaxial stack; etching a recess in the first and second epitaxial stacks, wherein the recess exposes end surfaces of the first and second channel layers; performing a first ion implantation process to form a first lightly doped region; performing a second ion implantation process to form a second lightly doped region, wherein a tilt angle of the second ion implantation process is greater than a tilt angle of the first ion implantation process; forming first and second source/drain epitaxial features in the recess; and replacing the first and the second sacrificial layers with a high-k/metal gate structure.Type: ApplicationFiled: May 15, 2023Publication date: November 21, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yi-Syuan SIAO, Chien-Yu LIN, Meng-Han CHOU, Su-Hao LIU, Chi On CHUI
-
Publication number: 20240387180Abstract: The present disclosure provides a method to enlarge the process window for forming a source/drain contact. The method may include receiving a workpiece that includes a source/drain feature exposed in a source/drain opening defined between two gate structures, conformally depositing a dielectric layer over sidewalls of the source/drain opening and a top surface of the source/drain feature, anisotropically etching the dielectric layer to expose the source/drain feature, performing an implantation process to the dielectric layer, and after the performing of the implantation process, performing a pre-clean process to the workpiece. The implantation process includes a non-zero tilt angle.Type: ApplicationFiled: July 29, 2024Publication date: November 21, 2024Inventors: Meng-Han Chou, Kuan-Yu Yeh, Wei-Yip Loh, Hung-Hsu Chen, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240363736Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a first fin structure with a first height and a first width formed over the substrate, a second fin structure with a second height and a second width formed over the substrate, and an insulating stack formed over lower portions of the first and second fin structures. The second height can be substantially equal to the first height and the second width can be greater than the first width. A top surface of the insulating stack can be below top surfaces of the first and second fin structures.Type: ApplicationFiled: July 12, 2024Publication date: October 31, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Su-Hao Liu, Huicheng Chang, Chien-Tai Chan, Liang-Yin Chen, Yee-Chia Yeo, Szu-Ying Chen
-
Publication number: 20240363399Abstract: A method includes forming a first dielectric layer over a source/drain region, and forming a source/drain contact plug over and electrically connecting to the source/drain region. A top portion of the source/drain contact plug has a first lateral dimension. An implantation process is performed to implant a dopant into the first dielectric layer. The implantation process results in the source/drain contact plug to have a second lateral dimension smaller than the first lateral dimension. The method further includes forming a second dielectric layer over the etch stop layer, and forming a gate contact plug adjacent to the source/drain contact plug.Type: ApplicationFiled: July 12, 2024Publication date: October 31, 2024Inventors: Kuo-Ju Chen, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Meng-Han Chou
-
Patent number: 12112977Abstract: A method includes forming a first dielectric layer over a source/drain region, and forming a source/drain contact plug over and electrically connecting to the source/drain region. A top portion of the source/drain contact plug has a first lateral dimension. An implantation process is performed to implant a dopant into the first dielectric layer. The implantation process results in the source/drain contact plug to have a second lateral dimension smaller than the first lateral dimension. The method further includes forming a second dielectric layer over the etch stop layer, and forming a gate contact plug adjacent to the source/drain contact plug.Type: GrantFiled: March 27, 2023Date of Patent: October 8, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Kuo-Ju Chen, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Meng-Han Chou
-
Patent number: 12107086Abstract: The present disclosure provides a method that includes providing a semiconductor substrate having a first region and a second region; forming a first gate within the first region and a second gate within the second region on the semiconductor substrate; forming first source/drain features of a first semiconductor material with an n-type dopant in the semiconductor substrate within the first region; forming second source/drain features of a second semiconductor material with a p-type dopant in the semiconductor substrate within the second region. The second semiconductor material is different from the first semiconductor material in composition. The method further includes forming first silicide features to the first source/drain features and second silicide features to the second source/drain features; and performing an ion implantation process of a species to both the first and second regions, thereby introducing the species to first silicide features and the second source/drain features.Type: GrantFiled: March 28, 2022Date of Patent: October 1, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Su-Hao Liu, Yan-Ming Tsai, Chung-Ting Wei, Ziwei Fang, Chih-Wei Chang, Chien-Hao Chen, Huicheng Chang
-
Publication number: 20240321751Abstract: A semiconductor device includes a first dielectric layer disposed over a substrate and a conductive feature, a doped dielectric layer disposed over the first dielectric layer, a first metal portion disposed in the first dielectric layer and in contact with the conductive feature, and a doped metal portion disposed over the first metal portion. The first metal portion and the doped metal portion include a same noble metal material. The doped dielectric layer and the doped metal portion include same dopants. The dopants are bonded to the noble metal material.Type: ApplicationFiled: May 3, 2024Publication date: September 26, 2024Inventors: Kuo-Ju Chen, Chun-Hsien Huang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo