Patents by Inventor Su-Jung (Candace) Tsai

Su-Jung (Candace) Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11650144
    Abstract: Aspects of the present disclosure involve systems, methods, and the like, for a fabrication of a particulate matter (PM) sensor that utilizes a capacitance sensor to detect sub-micrometer and nanoparticles in the respirable range of an environment. In one implementation, the capacitance sensor may comprise interdigitated electrodes between which a capacitance may be measured. PM deposited on the sensor may cause the capacitance between the electrodes to be altered and such a change in capacitance may be measured by the PM sensor. This measurement of the change in capacitance of the interdigitated capacitance sensor may therefore be correlated to the presence of sub-micrometer and nanoparticles in an environment. In one particular implementation, the PM sensor may further include a micro-heater circuit, a readout circuit, and an interface connecting the readout circuit to the micro-heater/capacitance sensor of the PM sensor.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: May 16, 2023
    Assignees: Colorado State University Research Foundation, Purdue Research Foundation
    Inventors: Su-Jung (Candace) Tsai, Doosan Back, David B. Janes
  • Patent number: 11248993
    Abstract: Implementations described and claimed herein provide systems and methods for sampling particles from air. In one implementation, an inlet opening is defined in a proximal end of a cassette top, and the inlet opening has an inlet diameter. An internal surface extends along an airflow curve from the inlet opening to an internal cavity. A sampling substrate is formed by at least one grid attached to a filter. The sampling substrate is disposed in the internal cavity at an internal distance from the inlet opening. The inlet opening and the airflow curve of the internal surface generate an airflow of the air to the sampling substrate. The sampling substrate collects a set of the particles from the air, and the inlet diameter, the airflow, and the internal distance dictate a cutoff diameter of the set of particles collected from the air by the sampling substrate.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: February 15, 2022
    Assignee: Colorado State University Research Foundation
    Inventor: Su-Jung (Candace) Tsai
  • Publication number: 20210247290
    Abstract: Aspects of the present disclosure involve systems, methods, and the like, for a fabrication of a particulate matter (PM) sensor that utilizes a capacitance sensor to detect sub-micrometer and nanoparticles in the respirable range of an environment. In one implementation, the capacitance sensor may comprise interdigitated electrodes between which a capacitance may be measured. PM deposited on the sensor may cause the capacitance between the electrodes to be altered and such a change in capacitance may be measured by the PM sensor. This measurement of the change in capacitance of the interdigitated capacitance sensor may therefore be correlated to the presence of sub-micrometer and nanoparticles in an environment. In one particular implementation, the PM sensor may further include a micro-heater circuit, a readout circuit, and an interface connecting the readout circuit to the micro-heater/capacitance sensor of the PM sensor.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 12, 2021
    Applicants: Colorado State University Research Foundation, Purdue Research Foundation
    Inventors: Su-Jung (Candace) Tsai, Doosan Back, David B. Janes
  • Publication number: 20190250076
    Abstract: Implementations described and claimed herein provide systems and methods for sampling particles from air. In one implementation, an inlet opening is defined in a proximal end of a cassette top, and the inlet opening has an inlet diameter. An internal surface extends along an airflow curve from the inlet opening to an internal cavity. A sampling substrate is formed by at least one grid attached to a filter. The sampling substrate is disposed in the internal cavity at an internal distance from the inlet opening. The inlet opening and the airflow curve of the internal surface generate an airflow of the air to the sampling substrate. The sampling substrate collects a set of the particles from the air, and the inlet diameter, the airflow, and the internal distance dictate a cutoff diameter of the set of particles collected from the air by the sampling substrate.
    Type: Application
    Filed: September 6, 2018
    Publication date: August 15, 2019
    Applicant: Colorado State University Research Foundation
    Inventor: Su-Jung (Candace) Tsai