Patents by Inventor Su-Wei Chang

Su-Wei Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145632
    Abstract: A micro light emitting device includes an epitaxial structure, a conductive layer, and a first insulating layer. The epitaxial structure has a first surface and a second surface opposite to the first surface, and includes a first semiconductor layer, an active layer and a second semiconductor layer that are arranged in such order in a direction from the first surface to the second surface. The conductive layer is formed on a surface of the first semiconductor layer away from the active layer. The first insulating layer is formed on the surface of the first semiconductor layer away from the active layer, and exposes at least a part of the conductive layer.
    Type: Application
    Filed: October 23, 2023
    Publication date: May 2, 2024
    Inventors: Ming-Chun TSENG, Shaohua HUANG, Hongwei WANG, Kang-Wei PENG, Su-Hui LIN, Xiaomeng LI, Chi-Ming TSAI, Chung-Ying CHANG
  • Patent number: 11862851
    Abstract: An antenna device, including a case assembly, a first waveguide assembly, and a second waveguide assembly, is provided. A cavity is defined by an interior of the case assembly, and a first side of the case assembly has a slot penetrating the case assembly. At least part of the first waveguide assembly is located within the cavity and is connected to the first side. A projection of the first waveguide assembly to the first side is symmetrically located on two sides of the slot. The second waveguide assembly is located outside the case assembly, is close to the first side, and is connected to the slot. The second waveguide assembly is suitable for transmitting an antenna signal to the cavity through the slot and the first waveguide assembly. The antenna signal resonates in the cavity and radiates outward from a second side of the cavity opposite to the first side.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: January 2, 2024
    Inventors: Chun-Cheng Chan, Jiun-Wei Wu, Chih-Hsien Wu, Su-Wei Chang
  • Publication number: 20230269008
    Abstract: A radio frequency circuit includes a base plate, an element under test, a transmission line, a sensing line, and a controller. The base plate has a first surface. The element under test is disposed on the base plate and includes an output port to output an RF signal. The transmission line is disposed on the first surface of the base plate and electrically connected to the output port of the element under test. The sensing line is substantially parallel to the transmission line within a sensing area of the base plate. The sensing line is separated from the transmission line by a first length and adapted for inducing the RF signal on the transmission line to generate an induction signal. The controller is disposed on the base plate, electrically connected to the sensing line, and configured to determine the state of the element under test according to the induction signal.
    Type: Application
    Filed: February 13, 2023
    Publication date: August 24, 2023
    Applicant: TMY Technology Inc.
    Inventor: Su-Wei Chang
  • Publication number: 20230268150
    Abstract: An electrical switch, including an insulation base, an insulative-and-movable component, at least two output ports, and at least two transmission ports, is provided. The insulative-and-movable component is disposed on the insulation base and is adapted to operate between at least two switch positions relative to the insulation base. The two output ports are disposed on the insulation base. The two transmission ports are disposed on the insulative-and-movable component. When the insulative-and-movable component is located at one of the two switch positions, one of the two output ports is aligned with one of the two transmission ports and other one of the two output ports is misaligned with other one of the two transmission ports.
    Type: Application
    Filed: February 2, 2023
    Publication date: August 24, 2023
    Applicant: TMY Technology Inc.
    Inventor: Su-Wei Chang
  • Publication number: 20230223701
    Abstract: An antenna device, including a case assembly, a first waveguide assembly, and a second waveguide assembly, is provided. A cavity is defined by an interior of the case assembly, and a first side of the case assembly has a slot penetrating the case assembly. At least part of the first waveguide assembly is located within the cavity and is connected to the first side. A projection of the first waveguide assembly to the first side is symmetrically located on two sides of the slot. The second waveguide assembly is located outside the case assembly, is close to the first side, and is connected to the slot. The second waveguide assembly is suitable for transmitting an antenna signal to the cavity through the slot and the first waveguide assembly. The antenna signal resonates in the cavity and radiates outward from a second side of the cavity opposite to the first side.
    Type: Application
    Filed: August 24, 2022
    Publication date: July 13, 2023
    Applicant: TMY Technology Inc.
    Inventors: Chun-Cheng Chan, Jiun-Wei Wu, Chih-Hsien Wu, Su-Wei Chang
  • Publication number: 20230223682
    Abstract: An antenna device includes a differential antenna and a first balun. The differential antenna includes a first radiator, a first antenna port and a second antenna port connected to a first surface of the first radiator. Orthographic projections of the first antenna port and the second antenna port projected to the first radiator are symmetrical to a midpoint of the first radiator. The first balun is located on one side of the first surface of the first radiator, and its orthographic projection on the first plane where the first surface is located overlaps the first surface. The first balun includes a first port, a first wiring, a first coupling structure electrically connected to the first antenna port, and a second coupling structure electrically connected to the second antenna port. Neither the first coupling structure nor the second coupling structure directly contacts the first wiring.
    Type: Application
    Filed: August 23, 2022
    Publication date: July 13, 2023
    Applicant: TMY Technology Inc.
    Inventors: Chun-Cheng Chan, Jiun-Wei Wu, Su-Wei Chang
  • Patent number: 11682818
    Abstract: An antennas-in-package (AiP) verification board is provided, which includes a carrier board configured for disposing an antenna array or an electronic circuit; and a plurality of SMPM connectors. The plurality of SMPM connectors are arranged in an array on the carrier board and electrically connected with the antenna array or the electronic circuit of the carrier board for testing the characteristics of the antenna array on the carrier board or the characteristics of the electronic circuit on the carrier board. The AiP verification board is fixed on a beamforming test platform. In addition to the aforementioned AiP verification board, an AiP verification board including a plurality of adaptor structures and an AiP verification board including a plurality of connectors and a plurality of adaptor structures are also provided.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: June 20, 2023
    Assignee: TMY Technology Inc.
    Inventors: Su-Wei Chang, Chueh-Jen Lin, Wen-Tsai Tsai, Tzu-Chieh Hung, Yang Tai, Chien-Tse Fang, Po-Chia Huang, Te-Liang Sun, Ying-Yen Lu
  • Publication number: 20230152361
    Abstract: A testing base includes a housing, a carrier, a wave absorber, and a filler. The housing has an inner surface. The carrier is disposed on the housing. The carrier includes an upper surface, a lower surface, and a groove recessed in the upper surface. The groove is adapted for accommodating a component to be tested. The lower surface and the inner surface of the housing define a cavity body together. The wave absorber is disposed on the inner surface of the housing. The filler is filled in the cavity body and contacts the wave absorber and the carrier. A relative permittivity of the filler is less than or equal to 2.
    Type: Application
    Filed: November 14, 2022
    Publication date: May 18, 2023
    Applicant: TMY Technology Inc.
    Inventor: Su-Wei Chang
  • Publication number: 20230073838
    Abstract: A beamforming apparatus and beam controlling method are provided. The beamforming apparatus includes a non-flat substrate, an antenna array, and an adjusting circuit. The antenna array includes multiple antenna units and are disposed at the non-flat substrate. The adjusting circuit is coupled with the antenna array. The adjusting circuit is used to adjust the signal of at least one of the antenna units according to the shape of the non-flat substrate and a predetermined signal angle. Therefore, it could be implemented in various scenario with flexibility.
    Type: Application
    Filed: August 2, 2022
    Publication date: March 9, 2023
    Applicant: TMY Technology Inc.
    Inventor: Su-Wei Chang
  • Patent number: 11600894
    Abstract: Provided is a rapid over-the-air (OTA) production line test platform, including a device under test (DUT), an antenna array and two reflecting plates. The DUT has a beamforming function. The antenna array is arranged opposite to the DUT, and emits beams with beamforming. Two reflecting plates are disposed opposite to each other, and are arranged between the DUT and the antenna array. The beam OTA test of the DUT is carried out by propagation of the beams between the antenna array, the DUT and the two reflecting plates. Accordingly, the test time can be greatly shortened and the cost of test can be effectively reduced. In addition to the above-mentioned rapid OTA production line test platform, platforms for performing the OTA production line test by using horn antenna arrays together with bending waveguides and using a 3D elliptic curve are also provided.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: March 7, 2023
    Assignee: TMY Technology Inc.
    Inventors: Su-Wei Chang, Chueh-Jen Lin, Wen-Tsai Tsai, Shun-Chung Kuo, Yang Tai, Wei-Yang Chen, Chien-Tse Fang, Po-Chia Huang, Jiun-Wei Wu, Yu-Cheng Lin, Shao-Chun Hsu
  • Publication number: 20230028993
    Abstract: An electromagnetic wave transmission structure including a substrate, at least one transmission line, antennas, and tunable dielectric units is provided. The transmission line includes a first extending portion and second extending portions. The first extending portion is extended in a first direction. The second extending portions are respectively extended from two opposite edges of the first extending portion, and an extending direction thereof is parallel to a second direction. The second extending portions are arranged along the first direction. The antennas are disposed near the at least one transmission line. The tunable dielectric units are overlapped with portions of the at least one transmission line located between the antennas. Each tunable dielectric unit has an overlapped first electrode layer and controllable dielectric layer. The controllable dielectric layer is disposed between the first electrode layer and the at least one transmission line.
    Type: Application
    Filed: August 3, 2022
    Publication date: January 26, 2023
    Applicant: TMY Technology Inc.
    Inventors: Su-Wei Chang, Sheng-Fuh Chang, Chia-Chan Chang, Shih-Cheng Lin, Yuan-Chun Lin
  • Publication number: 20220384961
    Abstract: Provided is an electromagnetic wave reflectarray, including a first substrate, a second substrate, first wires and second wires respectively arranged on the first substrate and the second substrate along a first direction and a second direction, antenna electrodes and tuning electrodes respectively arranged into first electrode strings and second electrode strings electrically connected to the first wires and the second wires on the first substrate and the second substrate along the first direction, and a liquid crystal layer disposed between the first substrate and the second substrate. The tuning electrodes completely cover the orthographic projections of the antenna electrodes on the second substrate.
    Type: Application
    Filed: August 11, 2022
    Publication date: December 1, 2022
    Applicant: TMY Technology Inc.
    Inventors: Su-Wei Chang, Sheng-Fuh Chang, Chia-Chan Chang, Shih-Cheng Lin, Yuan-Chun Lin
  • Patent number: 11489593
    Abstract: An optical and electrical hybrid beamforming transmitter, receiver, and signal processing method are provided. The transmitter includes, but is not limited to, two photoelectric converters, two adjusting circuits, and an antenna array. The photoelectric converter converts an optical signal into an initial electric signal, respectively. The adjusting circuit is coupled to the photoelectric converter, and are adapted for delaying the initial electric signal according to an expected beam pattern formed by the antenna array, respectively, to output an adjusted electric signal. The antenna array includes two antennas that are coupled to the adjusting circuit. The antenna radiates electromagnetic wave according to the adjusted electric signal. Accordingly, a phase of the signal may be adjusted, and the number of the elements may be reduced.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: November 1, 2022
    Assignee: TMY Technology Inc.
    Inventors: Su-Wei Chang, Han-Ti Chuang, Wen-Tsai Tsai, Tzu-Chieh Hung, Yang Tai, Shao-Chun Hsu, Guo-Zhen Su
  • Publication number: 20220173810
    Abstract: An optical and electrical hybrid beamforming transmitter, receiver, and signal processing method are provided. The transmitter includes, but is not limited to, two photoelectric converters, two adjusting circuits, and an antenna array. The photoelectric converter converts an optical signal into an initial electric signal, respectively. The adjusting circuit is coupled to the photoelectric converter, and are adapted for delaying the initial electric signal according to an expected beam pattern formed by the antenna array, respectively, to output an adjusted electric signal. The antenna array includes two antennas that are coupled to the adjusting circuit. The antenna radiates electromagnetic wave according to the adjusted electric signal. Accordingly, a phase of the signal may be adjusted, and the number of the elements may be reduced.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 2, 2022
    Applicant: TMY Technology Inc.
    Inventors: Su-Wei Chang, Han-Ti Chuang, Wen-Tsai Tsai, Tzu-Chieh Hung, Yang Tai, Shao-Chun Hsu, Guo-Zhen Su
  • Patent number: 11316240
    Abstract: A transition structure for millimeter wave is provided. The transition structure includes a first layer signal element coupled to an end of a first transmission line and a plurality of first layer ground elements surrounding the end of the first transmission line equidistantly from the end of the first transmission line and disposed along two opposite sides of a strip body of the first transmission line equidistantly from the strip body of the first transmission line. The transition structure further includes an intermediate layer signal element coupled to the first layer signal element and a plurality of intermediate layer ground elements surrounding the intermediate layer signal element quasi-coaxially. A multilayer transition structure including a multilayer structure and the transition structure is also provided. Therefore, the problem of operating frequency caused by the thickness of the multilayer structure can be overcome, thereby increasing the resonance frequency of the multilayer structure.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: April 26, 2022
    Assignee: TMY Technology Inc.
    Inventors: Su-Wei Chang, Chueh-Jen Lin, Wen-Tsai Tsai, Tzu-Chieh Hung, Yang Tai, Chien-Tse Fang, Po-Chia Huang, Tzu-Wen Chiang, Shao-Chun Hsu, Yu-Cheng Lin, Wei-Yang Chen
  • Publication number: 20220069428
    Abstract: Provided is a rapid over-the-air (OTA) production line test platform, including a device under test (DUT), an antenna array and two reflecting plates. The DUT has a beamforming function. The antenna array is arranged opposite to the DUT, and emits beams with beamforming. Two reflecting plates are disposed opposite to each other, and are arranged between the DUT and the antenna array. The beam OTA test of the DUT is carried out by propagation of the beams between the antenna array, the DUT and the two reflecting plates. Accordingly, the test time can be greatly shortened and the cost of test can be effectively reduced. In addition to the above-mentioned rapid OTA production line test platform, platforms for performing the OTA production line test by using horn antenna arrays together with bending waveguides and using a 3D elliptic curve are also provided.
    Type: Application
    Filed: October 13, 2021
    Publication date: March 3, 2022
    Applicant: TMY Technology Inc.
    Inventors: Su-Wei Chang, Chueh-Jen Lin, Wen-Tsai Tsai, Shun-Chung Kuo, Yang Tai, Wei-Yang Chen, Chien-Tse Fang, Po-Chia Huang, Jiun-Wei Wu, Yu-Cheng Lin, Shao-Chun Hsu
  • Patent number: 11205827
    Abstract: Provided is a rapid over-the-air (OTA) production line test platform, including a device under test (DUT), an antenna array and two reflecting plates. The DUT has a beamforming function. The antenna array is arranged opposite to the DUT, and emits beams with beamforming. Two reflecting plates are disposed opposite to each other, and are arranged between the DUT and the antenna array. The beam OTA test of the DUT is carried out by propagation of the beams between the antenna array, the DUT and the two reflecting plates. Accordingly, the test time can be greatly shortened and the cost of test can be effectively reduced. In addition to the above-mentioned rapid OTA production line test platform, platforms for performing the OTA production line test by using horn antenna arrays together with bending waveguides and using a 3D elliptic curve are also provided.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 21, 2021
    Assignee: TMY Technology Inc.
    Inventors: Su-Wei Chang, Chueh-Jen Lin, Wen-Tsai Tsai, Shun-Chung Kuo, Yang Tai, Wei-Yang Chen, Chien-Tse Fang, Po-Chia Huang, Jiun-Wei Wu, Yu-Cheng Lin, Shao-Chun Hsu
  • Publication number: 20210050923
    Abstract: Provided is a rapid over-the-air (OTA) production line test platform, including a device under test (DUT), an antenna array and two reflecting plates. The DUT has a beamforming function. The antenna array is arranged opposite to the DUT, and emits beams with beamforming. Two reflecting plates are disposed opposite to each other, and are arranged between the DUT and the antenna array. The beam OTA test of the DUT is carried out by propagation of the beams between the antenna array, the DUT and the two reflecting plates. Accordingly, the test time can be greatly shortened and the cost of test can be effectively reduced. In addition to the above-mentioned rapid OTA production line test platform, platforms for performing the OTA production line test by using horn antenna arrays together with bending waveguides and using a 3D elliptic curve are also provided.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 18, 2021
    Inventors: Su-Wei Chang, Chueh-Jen Lin, Wen-Tsai Tsai, Shun-Chung Kuo, Yang Tai, Wei-Yang Chen, Chien-Tse Fang, Po-Chia Huang, Jiun-Wei Wu, Yu-Cheng Lin
  • Publication number: 20210050674
    Abstract: An antennas-in-package (AiP) verification board is provided, which includes a carrier board configured for disposing an antenna array or an electronic circuit; and a plurality of SMPM connectors. The plurality of SMPM connectors are arranged in an array on the carrier board and electrically connected with the antenna array or the electronic circuit of the carrier board for testing the characteristics of the antenna array on the carrier board or the characteristics of the electronic circuit on the carrier board. The AiP verification board is fixed on a beamforming test platform. In addition to the aforementioned AiP verification board, an AiP verification board including a plurality of adaptor structures and an AiP verification board including a plurality of connectors and a plurality of adaptor structures are also provided.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 18, 2021
    Inventors: Su-Wei Chang, Chueh-Jen Lin, Wen-Tsai Tsai, Tzu-Chieh Hung, Yang Tai, Chien-Tse Fang, Po-Chia Huang, Te-Liang Sun, Ying-Yen Lu
  • Publication number: 20210050643
    Abstract: A transition structure for millimeter wave is provided. The transition structure includes a first layer signal element coupled to an end of a first transmission line and a plurality of first layer ground elements surrounding the end of the first transmission line equidistantly from the end of the first transmission line and disposed along two opposite sides of a strip body of the first transmission line equidistantly from the strip body of the first transmission line. The transition structure further includes an intermediate layer signal element coupled to the first layer signal element and a plurality of intermediate layer ground elements surrounding the intermediate layer signal element quasi-coaxially. A multilayer transition structure including a multilayer structure and the transition structure is also provided. Therefore, the problem of operating frequency caused by the thickness of the multilayer structure can be overcome, thereby increasing the resonance frequency of the multilayer structure.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Inventors: Su-Wei Chang, Chueh-Jen Lin, Wen-Tsai Tsai, Tzu-Chieh Hung, Yang Tai, Chien-Tse Fang, Po-Chia Huang, Tzu-Wen Chiang, Shao-Chun Hsu, Yu-Cheng Lin, Wei-Yang Chen