Patents by Inventor Subashini Srinivasan

Subashini Srinivasan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130802
    Abstract: Systems and methods for electromagnetic (EM) distortion detection and compensation are disclosed. In one aspect, the system includes an instrument, the system configured to: determine a reference position of the distal end of the instrument at a first time based on EM location data, determine that the distal end of the instrument at a second time is static, and determine that the EM location data at the second time is indicative of a position of the distal end of the instrument having changed from the reference position by greater than a threshold distance. The system is further configured to: determine a current offset based on the distance between the position at the second time and the reference position at the first time, and determine a compensated position of the distal end of the instrument based on the EM location data and the current offset.
    Type: Application
    Filed: January 4, 2024
    Publication date: April 25, 2024
    Inventors: Chauncey F. GRAETZEL, Subashini SRINIVASAN, Yuriy MALININ, Shyamprasad KONDURI
  • Patent number: 11864848
    Abstract: Systems and methods for electromagnetic (EM) distortion detection and compensation are disclosed. In one aspect, the system includes an instrument, the system configured to: determine a reference position of the distal end of the instrument at a first time based on EM location data, determine that the distal end of the instrument at a second time is static, and determine that the EM location data at the second time is indicative of a position of the distal end of the instrument having changed from the reference position by greater than a threshold distance. The system is further configured to: determine a current offset based on the distance between the position at the second time and the reference position at the first time, and determine a compensated position of the distal end of the instrument based on the EM location data and the current offset.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: January 9, 2024
    Assignee: Auris Health, Inc.
    Inventors: Chauncey F. Graetzel, Subashini Srinivasan, Yuriy Malinin, Shyamprasad Konduri
  • Patent number: 11864850
    Abstract: Provided are systems and methods for path-based navigation of tubular networks. In one aspect, the method includes receiving location data from at least one of a set of location sensors and a set of robot command inputs, the location data being indicative of a location of an instrument configured to be driven through a luminal network. The method also includes determining a first estimate of the location of the instrument at a first time based on the location data, determining a second estimate of the location of the instrument at the first time based on the path, and determining the location of the instrument at the first time based on the first estimate and the second estimate.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: January 9, 2024
    Assignee: Auris Health, Inc.
    Inventors: Subashini Srinivasan, Hedyeh Rafii-Tari, Ritwik Ummalaneni, David Paul Noonan, Prasanth Jeevan
  • Publication number: 20230390002
    Abstract: Provided are systems and methods for path-based navigation of tubular networks. In one aspect, the method includes receiving location data from at least one of a set of location sensors and a set of robot command inputs, the location data being indicative of a location of an instrument configured to be driven through a luminal network. The method also includes determining a first estimate of the location of the instrument at a first time based on the location data, determining a second estimate of the location of the instrument at the first time based on the path, and determining the location of the instrument at the first time based on the first estimate and the second estimate.
    Type: Application
    Filed: June 6, 2023
    Publication date: December 7, 2023
    Inventors: Subashini Srinivasan, Hedyeh Rafii-Tari, Ritwik Ummalaneni, David Paul Noonan, Prasanth Jeevan
  • Publication number: 20230270505
    Abstract: Provided are systems and methods for registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Application
    Filed: February 13, 2023
    Publication date: August 31, 2023
    Inventors: Subashini Srinivasan, David Paul Noonan, David Burdick Berman, Brian Matthew Patenaude
  • Patent number: 11712311
    Abstract: Provided are systems and methods for path-based navigation of tubular networks. In one aspect, the method includes receiving location data from at least one of a set of location sensors and a set of robot command inputs, the location data being indicative of a location of an instrument configured to be driven through a luminal network. The method also includes determining a first estimate of the location of the instrument at a first time based on the location data, determining a second estimate of the location of the instrument at the first time based on the path, and determining the location of the instrument at the first time based on the first estimate and the second estimate.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: August 1, 2023
    Assignee: Auris Health, Inc.
    Inventors: Subashini Srinivasan, Hedyeh Rafii-Tari, Ritwik Ummalaneni, David Paul Noonan, Prasanth Jeevan
  • Patent number: 11576730
    Abstract: Provided are systems and methods for registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: February 14, 2023
    Assignee: Auris Health, Inc.
    Inventors: Subashini Srinivasan, David Paul Noonan, David Burdick Berman, Brian Matthew Patenaude
  • Publication number: 20220265368
    Abstract: Systems and methods for electromagnetic (EM) distortion detection and compensation are disclosed. In one aspect, the system includes an instrument, the system configured to: determine a reference position of the distal end of the instrument at a first time based on EM location data, determine that the distal end of the instrument at a second time is static, and determine that the EM location data at the second time is indicative of a position of the distal end of the instrument having changed from the reference position by greater than a threshold distance. The system is further configured to: determine a current offset based on the distance between the position at the second time and the reference position at the first time, and determine a compensated position of the distal end of the instrument based on the EM location data and the current offset.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 25, 2022
    Inventors: Chauncey F. GRAETZEL, Subashini SRINIVASAN, Yuriy MALININ, Shyamprasad KONDURI
  • Patent number: 11324558
    Abstract: Systems and methods for electromagnetic (EM) distortion detection and compensation are disclosed. In one aspect, the system includes an instrument, the system configured to: determine a reference position of the distal end of the instrument at a first time based on EM location data, determine that the distal end of the instrument at a second time is static, and determine that the EM location data at the second time is indicative of a position of the distal end of the instrument having changed from the reference position by greater than a threshold distance. The system is further configured to: determine a current offset based on the distance between the position at the second time and the reference position at the first time, and determine a compensated position of the distal end of the instrument based on the EM location data and the current offset.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: May 10, 2022
    Assignee: Auris Health, Inc.
    Inventors: Chauncey F. Graetzel, Subashini Srinivasan, Yuriy Malinin, Shyamprasad Konduri
  • Publication number: 20220117677
    Abstract: Provided are systems and methods for weight-based registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Inventors: Hedyeh Rafii-Tari, Menglong Ye, Ritwik Ummalaneni, Subashini Srinivasan, Yuriy Malinin
  • Patent number: 11207141
    Abstract: Provided are systems and methods for weight-based registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: December 28, 2021
    Assignee: Auris Health, Inc.
    Inventors: Hedyeh Rafii-Tari, Menglong Ye, Ritwik Ummalaneni, Subashini Srinivasan, Yuriy Malinin
  • Publication number: 20210137617
    Abstract: Provided are systems and methods for path-based navigation of tubular networks. In one aspect, the method includes receiving location data from at least one of a set of location sensors and a set of robot command inputs, the location data being indicative of a location of an instrument configured to be driven through a luminal network. The method also includes determining a first estimate of the location of the instrument at a first time based on the location data, determining a second estimate of the location of the instrument at the first time based on the path, and determining the location of the instrument at the first time based on the first estimate and the second estimate.
    Type: Application
    Filed: January 22, 2021
    Publication date: May 13, 2021
    Inventors: Subashini Srinivasan, Hedyeh Rafii-Tari, Ritwik Ummalaneni, David Paul Noonan, Prasanth Jeevan
  • Publication number: 20210137609
    Abstract: Provided are systems and methods for registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Application
    Filed: January 22, 2021
    Publication date: May 13, 2021
    Inventors: Subashini Srinivasan, David Paul Noonan, David Burdick Berman, Brian Matthew Patenaude
  • Publication number: 20210059766
    Abstract: Systems and methods for electromagnetic (EM) distortion detection and compensation are disclosed. In one aspect, the system includes an instrument, the system configured to: determine a reference position of the distal end of the instrument at a first time based on EM location data, determine that the distal end of the instrument at a second time is static, and determine that the EM location data at the second time is indicative of a position of the distal end of the instrument having changed from the reference position by greater than a threshold distance. The system is further configured to: determine a current offset based on the distance between the position at the second time and the reference position at the first time, and determine a compensated position of the distal end of the instrument based on the EM location data and the current offset.
    Type: Application
    Filed: September 1, 2020
    Publication date: March 4, 2021
    Inventors: Chauncey F. Graetzel, Subashini Srinivasan, Yuriy Malinin, Shyamprasad Konduri
  • Publication number: 20210059764
    Abstract: Provided are systems and methods for weight-based registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Inventors: Hedyeh Rafii-Tari, Menglong Ye, Ritwik Ummalaneni, Subashini Srinivasan, Yuriy Malinin
  • Patent number: 10898286
    Abstract: Provided are systems and methods for path-based navigation of tubular networks. In one aspect, the method includes receiving location data from at least one of a set of location sensors and a set of robot command inputs, the location data being indicative of a location of an instrument configured to be driven through a luminal network. The method also includes determining a first estimate of the location of the instrument at a first time based on the location data, determining a second estimate of the location of the instrument at the first time based on the path, and determining the location of the instrument at the first time based on the first estimate and the second estimate.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: January 26, 2021
    Assignee: Auris Health, Inc.
    Inventors: Subashini Srinivasan, Hedyeh Rafii-Tari, Ritwik Ummalaneni, David Paul Noonan, Prasanth Jeevan
  • Patent number: 10898277
    Abstract: Provided are systems and methods for registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 26, 2021
    Assignee: Auris Health, Inc.
    Inventors: Subashini Srinivasan, David Paul Noonan, David Burdick Berman, Brian Matthew Patenaude
  • Publication number: 20200205903
    Abstract: Provided are systems and methods for registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 2, 2020
    Inventors: Subashini Srinivasan, David Paul Noonan, David Burdick Berman, Brian Matthew Patenaude
  • Patent number: 10684344
    Abstract: Improved motion correction for magnetic resonance imaging is provided. An MR imaging method provides a first sequence of MR images and a second sequence of MR images where: 1) the two sequences are inherently spatially co-registered and synchronous with each other; 2) the first sequence includes signal variation due to one or more causes other than motion or deformation; and 3) the second sequence does not include the signal variation of the first sequence. In this situation, the second sequence can be used to perform motion correction for the first sequence. One example of this approach is Dixon MR imaging, where the water images are the first sequence and the fat images are the second sequence.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: June 16, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Bruce L. Daniel, Brian A. Hargreaves, Subashini Srinivasan
  • Patent number: 10524866
    Abstract: Provided are systems and methods for registration of location sensors. In one aspect, a system includes an instrument and a processor configured to provide a first set of commands to drive the instrument along a first branch of the luminal network, the first branch being outside a path to a target within a model. The processor is also configured to track a set of one or more registration parameters during the driving of the instrument along the first branch and determine that the set of registration parameters satisfy a registration criterion. The processor is further configured to determine a registration between a location sensor coordinate system and a model coordinate system based on location data received from a set of location sensors during the driving of the instrument along the first branch and a second branch.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: January 7, 2020
    Assignee: Auris Health, Inc.
    Inventors: Subashini Srinivasan, David Paul Noonan, David Burdick Berman, Brian Matthew Patenaude