Patents by Inventor Subasingha Shaminda Subasingha

Subasingha Shaminda Subasingha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954877
    Abstract: Sensors, including time-of-flight sensors, may be used to detect objects in an environment. In an example, a vehicle may include a time-of-flight sensor that images objects around the vehicle, e.g., so the vehicle can navigate relative to the objects. Sensor data generated by the time-of-flight sensor can include returns associated with highly reflective objects that cause glare. In some examples, a depth of a sensed surface is determined from the sensor data and additional pixels at the same depth are identified. The subset of pixels at the depth are filtered by comparing a measured intensity value to a threshold intensity value for the depth. Other threshold intensity values can be applied to subsets of pixels at different depths.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: April 9, 2024
    Assignee: Zoox, Inc.
    Inventors: Subasingha Shaminda Subasingha, Yongzhe Chen, Mehran Ferdowsi, Samuel Holladay, Turhan Karadeniz, Robert Nicholas Moor, Joseph Patrick Warga, Harrison Thomas Waschura, Silas Kogure Wilkinson
  • Patent number: 11914390
    Abstract: Techniques for determining information associated with sounds detected in an environment based on audio data and map data or perception data are discussed herein. A vehicle can use map data and/or perception data to distinguish between multiple audio signals or sounds. A direct source of sound can be distinguished from a reflected source of sound by determining a direction of arrival of sounds and which objects the directions of arrival are associated with in the environment. A reflected sound can be received without receiving a direct sound. Based on the reflected sound and map data or perception data, characteristics of sound in an occluded region of the environment may be determined and used to control the vehicle.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: February 27, 2024
    Assignee: ZOOX, INC.
    Inventors: Venkata Subrahmanyam Chandra Sekhar Chebiyyam, Aleksandr Oysgelt, Subasingha Shaminda Subasingha, Nam Gook Cho
  • Patent number: 11904848
    Abstract: This disclosure relates to systems and techniques for identifying collisions, such as relatively low energy impact collisions involving an autonomous vehicle. Sensor data from a first sensor modality in a first array may be used to determine a first estimated location of impact and second sensor data from a second sensor modality in a second array may be used to determine a second estimated location of impact. A low energy impact event may be configured when the first estimated location of impact corresponds to the second estimated location of impact.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: February 20, 2024
    Assignee: Zoox, Inc.
    Inventors: Marina Camille Josephs, Mark Alan Bates, Nam Gook Cho, Subhasis Das, Markus Jost, Amanda Brown Prescott, Valerie Bumbaca Randolph, Subasingha Shaminda Subasingha
  • Patent number: 11861857
    Abstract: Sensors, including time-of-flight sensors, may be used to detect objects in an environment. In an example, a vehicle may include a time-of-flight sensor that images objects around the vehicle, e.g., so the vehicle can navigate relative to the objects. The sensor may generate first image data at a first configuration and second image data at a second configuration. A disambiguated depth of a surface may be determined from the first image data and the second image data. If the disambiguated depth is greater than a nominal maximum depth of the sensor in the first configuration, an intensity of the surface may be determined from the first image data. If the intensity meets or exceeds a threshold intensity, the surface may be determined to be beyond the nominal maximum depth. If the intensity is less than the threshold intensity, an actual depth of the surface may be determined form the second image data as a distance less than the nominal maximum depth.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: January 2, 2024
    Assignee: Zoox, Inc.
    Inventors: Subasingha Shaminda Subasingha, Yongzhe Chen, Mehran Ferdowsi, Samuel Holladay, Turhan Karadeniz, Robert Nicholas Moor, Joseph Patrick Warga, Harrison Thomas Waschura, Silas Kogure Wilkinson
  • Patent number: 11851049
    Abstract: Techniques for utilizing microphone or audio data to detect and responding to low velocity impacts to a system such as an autonomous vehicle. In some cases, the system may be equipped with a plurality of microphones that may be used to detect impacts that fail to register on the data captured by the vehicle's inertial measurement units and may go undetected by the vehicle's perception system and sensors. In one specific example, the perception system of the autonomous vehicle may identify a period of time in which a potential low velocity impact may occur. The autonomous vehicle may then utilize the microphone or audio data associated with the period of time to determine if an impact occurred.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: December 26, 2023
    Assignee: Zoox, Inc.
    Inventors: Dilip Bethanabhotla, Michael Carsten Bosse, Venkata Subrahmanyam Chandra Sekhar Chebiyyam, Nam Gook Cho, Jonathan Tyler Dowdall, Amanda Brown Prescott, Subasingha Shaminda Subasingha, Sarah Tariq
  • Patent number: 11841438
    Abstract: Sensors, including time-of-flight sensors, may be used to detect objects in an environment. In an example, a vehicle may include a time-of-flight sensor that images objects around the vehicle, e.g., so the vehicle can navigate relative to the objects. Sensor data generated by the time-of-flight sensor can return unreliable pixels, e.g., in the case of over-exposure or saturation. In some examples, multiple exposures captured at different exposure times can be used to determine an overall saturation value or metric representative of the sensor data. The saturation value may be used to control parameters of the sensor. For instance, the saturation value may be used to determine power control parameters for the sensor, e.g., to reduce over- and/or under-exposure.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 12, 2023
    Assignee: Zoox, Inc.
    Inventors: Subasingha Shaminda Subasingha, Turhan Karadeniz, Denis Nikitin, Harrison Thomas Waschura
  • Patent number: 11753042
    Abstract: Sensors, including time-of-flight sensors, may be used to detect objects in an environment. In an example, a vehicle may include a time-of-flight sensor that images objects around the vehicle, e.g., so the vehicle can navigate relative to the objects. Sensor data generated by the time-of-flight sensor can include saturated pixels, e.g., due to over-exposure, sensing highly-reflective objects, and/or excessive ambient light. In some examples, parameters associated with power of a time-of-flight sensor can be altered based on characteristics of the saturated pixels, as well as information about non-saturated pixels neighboring the saturated pixels. For example, the neighboring pixels may provide information about whether saturation is due to ambient light, e.g., sunlight, or due to emitted light from the sensor.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: September 12, 2023
    Inventors: Subasingha Shaminda Subasingha, Yongzhe Chen, Mehran Ferdowsi, Samuel Holladay, Turhan Karadeniz, Robert Nicholas Moor, Joseph Patrick Warga, Harrison Thomas Waschura, Silas Kogure Wilkinson
  • Patent number: 11740335
    Abstract: A machine-learned (ML) model for detecting that depth data (e.g., lidar data, radar data) comprises a false positive attributable to particulate matter, such as dust, steam, smoke, rain, etc. The ML model may be trained based at least in part on simulated depth data generated by a fluid dynamics model and/or by collecting depth data during operation of a device (e.g., an autonomous vehicle. In some examples, an autonomous vehicle may identify depth data that may be associated with particulate matter based at least in part on an outlier region in a thermal image. For example, the outlier region may be associated with steam.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 29, 2023
    Assignee: Zoox, Inc.
    Inventors: Sreevatsan Bhaskaran, Mehran Ferdowsi, Ryan McMichael, Subasingha Shaminda Subasingha
  • Patent number: 11733354
    Abstract: A LIDAR sensor assembly includes a laser light source to emit laser light, and a light sensor to produce a light signal in response to sensing reflections of the laser light emitted by the laser light source from a reference surface that is fixed in relation to the LIDAR sensor assembly. A controller of the LIDAR sensor assembly can process a plurality of samples of reflected light signals, process the samples to remove erroneous readings, and then provide accurate distance measurement. The system can use low-pass filters, or other components, to filter the plurality of samples to enable the “actual,” or primary, reflected light signal (i.e., light signal reflected off of a surface in an environment external to the sensor assembly, as opposed to extraneous, internal reflections off of lenses or other components or noise) to be identified and an accurate time of flight to be calculated.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: August 22, 2023
    Assignee: Zoox, Inc.
    Inventors: Turhan Karadeniz, Subasingha Shaminda Subasingha, Ravi Sankar Mahankali, Denis Nikitin
  • Patent number: 11726186
    Abstract: Sensors, including time-of-flight sensors, may be used to detect objects in an environment. In an example, a vehicle may include a time-of-flight sensor that images objects around the vehicle, e.g., so the vehicle can navigate relative to the objects. Sensor data generated by the time-of-flight sensor can return pixels subject to over-exposure or saturation, which may be from stray light. In some examples, multiple exposures captured at different exposure times can be used to determine a saturation value for sensor data. The saturation value may be used to determine a threshold intensity against which intensity values of a primary exposure are compared. A filtered data set can be obtained based on the comparison.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: August 15, 2023
    Assignee: Zoox, Inc.
    Inventors: Subasingha Shaminda Subasingha, Turhan Karadeniz, Denis Nikitin, Harrison Thomas Waschura
  • Patent number: 11709260
    Abstract: Techniques for determining a probability of a false negative associated with a location of an environment are discussed herein. Data from a sensor, such as a radar sensor, can be received that includes point cloud data, which includes first and second data points. The first data point has a first attribute and the second data point has a second attribute. A difference between the first and second attributes is determined such that a frequency distribution may be determined. The frequency distribution may then be used to determine a distribution function, which allows for the determination of a resolution function that is associated with the sensor. The resolution function may then be used to determine a probability of a false negative at a location in an environment. The probability can be used to control a vehicle in a safe and reliable manner.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: July 25, 2023
    Assignee: Zoox, Inc.
    Inventors: Badeea Ferdaous Alferdaous Alazem, Venkata Subrahmanyam Chandra Sekhar Chebiyyam, Joshua Kriser Cohen, Subasingha Shaminda Subasingha, Samantha Marie Ting, Chuang Wang
  • Patent number: 11681029
    Abstract: A time delay of arrival (TDOA) between a time that a light pulse was emitted to a time that a pulse reflected off an object was received at a light sensor may be determined for saturated signals by using an edge of the saturated signal, rather than a peak of the signal, for the TDOA calculation. The edge of the saturated signal may be accurately estimated by fitting a first polynomial curve to data points of the saturated signal, defining an intermediate magnitude threshold based on the polynomial curve, fitting a second polynomial curve to data points near an intersection of the first polynomial curve and the intermediate threshold, and identifying an intersection of the second polynomial curve and the intermediate threshold as the rising edge of the saturated signal.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: June 20, 2023
    Assignee: Zoox, Inc.
    Inventors: Subasingha Shaminda Subasingha, Riley Andrews, Turhan Karadeniz, Ravi Sankar Mahankali
  • Publication number: 20230142674
    Abstract: Techniques are discussed herein for analyzing radar data to determine that radar noise from one or more target detections potentially conceals additional objects near the target detection. Determining whether an object may be concealed can be based at least in part on a radar noise level based on a target detection, as well as distributions of radar cross sections and/or doppler data associated with particular object types. For a location near a target detection, a radar system may determine estimated noise levels, and compare the estimated noise levels to radar cross section probabilities associated with object types to determine the likelihood that an object of the object type could be concealed at the location. Based on the analysis, the system may determine a vehicle trajectory or otherwise may control a vehicle based on the likelihood that an object may be concealed at the location.
    Type: Application
    Filed: July 23, 2021
    Publication date: May 11, 2023
    Inventors: Venkata Subrahmanyam Chandra Sekhar Chebiyyam, Subasingha Shaminda Subasingha, Joshua Kriser Cohen, Chuang Wang, Samantha Marie Ting, Badeea Ferdaous Alferdaous Alazem
  • Publication number: 20230131721
    Abstract: Techniques are discussed herein for analyzing radar data to determine that radar noise from one or more target detections potentially conceals additional objects near the target detection. Determining whether an object may be concealed can be based at least in part on a radar noise level based on a target detection, as well as distributions of radar cross sections and/or doppler data associated with particular object types. For a location near a target detection, a radar system may determine estimated noise levels, and compare the estimated noise levels to radar cross section probabilities associated with object types to determine the likelihood that an object of the object type could be concealed at the location. Based on the analysis, the system may determine a vehicle trajectory or otherwise may control a vehicle based on the likelihood that an object may be concealed at the location.
    Type: Application
    Filed: July 23, 2021
    Publication date: April 27, 2023
    Inventors: Venkata Subrahmanyam Chandra Sekhar Chebiyyam, Subasingha Shaminda Subasingha, Joshua Kriser Cohen, Chuang Wang, Samantha Marie Ting, Badeea Ferdaous Alferdaous Alazem
  • Patent number: 11625042
    Abstract: Techniques for determining information associated with sounds detected in an environment based on audio data and map data or perception data are discussed herein. A vehicle can use map data and/or perception data to distinguish between multiple audio signals or sounds. A direct source of sound can be distinguished from a reflected source of sound by determining a direction of arrival of sounds and which objects the directions of arrival are associated with in the environment. A reflected sound can be received without receiving a direct sound. Based on the reflected sound and map data or perception data, characteristics of sound in an occluded region of the environment may be determined and used to control the vehicle.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: April 11, 2023
    Assignee: Zoox, Inc.
    Inventors: Venkata Subrahmanyam Chandra Sekhar Chebiyyam, Aleksandr Oysgelt, Subasingha Shaminda Subasingha, Nam Gook Cho
  • Patent number: 11606659
    Abstract: Techniques for adaptive cross-correlation are discussed. A first signal is received from a first audio sensor associated with a vehicle and a second signal is received from a second audio sensor associated with the vehicle. Techniques may include determining, based at least in part on the first signal, a first transformed signal in a frequency domain. Additionally, the techniques include determining, based at least in part on the second signal, a second transformed signal in the frequency domain. A parameter can be determined based at least in part on a characteristic associated with at least one of the vehicle, an environment proximate the vehicle, or one or more of the first or second signal. Cross-correlation data can be determined based at least in part on one or more of the first transformed signal, the second transformed signal, or the parameter.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: March 14, 2023
    Assignee: Zoox, Inc.
    Inventors: Venkata Subrahmanyam Chandra Sekhar Chebiyyam, Turhan Karadeniz, Nam Gook Cho, Subasingha Shaminda Subasingha
  • Publication number: 20230033315
    Abstract: Techniques for detecting and responding to an emergency vehicle are discussed. A vehicle computing system may determine that an emergency vehicle based on sensor data, such as audio and visual data. In some examples, the vehicle computing system may determine aggregate actions of objects (e.g., other vehicles yielding) proximate the vehicle based on the sensor data. In such examples, a determination that the emergency vehicle is operating may be based on the actions of the objects. The vehicle computing system may, in turn, identify a location to move out of a path of the emergency vehicle (e.g., yield) and may control the vehicle to the location. The vehicle computing system may determine that the emergency vehicle is no longer relevant to the vehicle and may control the vehicle along a route to a destination. Determining to yield and/or returning to a mission may be confirmed by a remote operator.
    Type: Application
    Filed: September 19, 2022
    Publication date: February 2, 2023
    Inventors: Sarah Tariq, Ravi Gogna, Marc Wimmershoff, Subasingha Shaminda Subasingha
  • Patent number: 11561292
    Abstract: Sensors, including time-of-flight sensors, may be used to detect objects in an environment. In an example, a vehicle may include a time-of-flight sensor that images objects around the vehicle, e.g., so the vehicle can navigate relative to the objects. Sensor data generated by the time-of-flight sensor can return unreliable pixels, e.g., in the case of over- or under-exposure. In some examples, parameters associated with power of a time-of-flight sensor can be altered based on a number of unreliable pixels in measured data and/or based on intensity values of the measured data. For example, unreliable pixels can be determined using phase frame information captured at a receiver of the sensor.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: January 24, 2023
    Assignee: Zoox, Inc.
    Inventors: Subasingha Shaminda Subasingha, Turhan Karadeniz, Robert Nicholas Moor, Mehran Ferdowsi, Denis Nikitin
  • Patent number: 11516613
    Abstract: Techniques for determining information associated with sounds detected in an environment based on audio data are discussed herein. Audio sensors of a vehicle may determine audio data associated with sounds from the environment. Sounds may be caused by objects in the environment such as emergency vehicles, construction zones, non-emergency vehicles, humans, audio speakers, nature, etc. A model may determine a classification of the audio data and/or a probability value representing a likelihood that sound in the audio data is associated with the classification. A direction of arrival may be determined based on receiving classification values from multiple audio sensors of the vehicle, and other actions can be performed or the vehicle can be controlled based on the direction of arrival.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: November 29, 2022
    Assignee: Zoox, Inc.
    Inventors: Venkata Subrahmanyam Chandra Sekhar Chebiyyam, Nam Gook Cho, Jonathan Tyler Dowdall, Subasingha Shaminda Subasingha
  • Patent number: 11500075
    Abstract: A LIDAR system that identifies, from a channel output, a false positive return and/or suppressing a corresponding false positive detection caused, in some cases, a strong reflection by a highly reflective surface that caused light to leak from a first channel to a second channel. The LIDAR system described herein may identify, as a false return, a return detected in the second channel that has an intensity that is much less than a return in the first channel and indicates a distance that is the same or very close to a distance indicated the return in the first channel. Based at least in part on identifying a return as a false return, the LIDAR system may suppress a false detection associated with the false return by modifying a detection threshold.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: November 15, 2022
    Assignee: Zoox, Inc.
    Inventors: Sreevatsan Bhaskaran, Mehran Ferdowsi, Ryan McMichael, Subasingha Shaminda Subasingha