Patents by Inventor SUBHADEEP BASU

SUBHADEEP BASU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230134893
    Abstract: Use of Swept Frequency Acoustic Interferometry (SFAI) is becoming ubiquitous in taking non-invasive measurements of fluid parameters like sound speed, sound attenuation and density of fluid. But measurement using SFAI is relatively slow as one needs to sweep a wide range of frequencies and for each probing frequency one needs to wait for settling time. Further, SFAI works well only on steady flow as sudden change in fluid flow destroys resonance condition, thereby making it unsuitable for flowing fluid. Present application provides method and system for faster assessment of sound speed in fluids using compressive sensing technique. The system first uses random samples in defined frequency scanning range of frequency sweep signal for generating pseudo analytic signal vector. The system then estimates pulse-echo view by applying compressive sensing technique over pseudo analytic signal vector.
    Type: Application
    Filed: September 28, 2022
    Publication date: May 4, 2023
    Applicant: Tata Consultancy Services Limited
    Inventors: ARIJIT SINHARAY, RAJ RAKSHIT, SUPRIYA GAIN, TAPAS CHAKRAVARTY, SUBHADEEP BASU, ACHANNA ANIL KUMAR
  • Publication number: 20230095525
    Abstract: This disclosure generally relates to the field of structural health monitoring, and, more particularly, to a method and system for evaluating residual life of components made of composite materials. Existing methods require performing computational methods such as Finite Element Analysis (FEA) on the results of Non-Destructive Testing (NDT) every time a component is inspected. This makes the process expensive and time-consuming. Thus, embodiments of present disclosure provide a method wherein NDT is performed using different sensing methods such as ultrasound, ultrasound pulse echo, thermography to determine type of defect, location of defect and depth of defect in a test component which are then fed into a pre-trained machine learning model to predict residual life of the component. Testing time is greatly reduced since the pre-trained machine learning model is trained offline using results of the computational methods.
    Type: Application
    Filed: September 21, 2022
    Publication date: March 30, 2023
    Applicant: Tata Consultancy Services Limited
    Inventors: YAGNIK PRAVINCHANDRA KALARIYA, ABHIJEET GOREY, AMIT GANGADHAR SALVI, SUBHADEEP BASU, SUPRIYA GAIN, TAPAS CHAKRAVARTY, CHIRABRATA BHAUMIK, ARPAN PAL, SOORIYAN SENGUTTUVAN, ARIJIT SINHARAY