Patents by Inventor Subhash R. Patel

Subhash R. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8129521
    Abstract: A single-step, one-pot process to obtain zotarolimus and other rapamycin derivatives on large scale is presented, which improves currently available synthesis schemes. In one embodiment, dried rapamycin is dissolved in isopropylacetate (IPAc). The solution is cooled, and 2,6-Lutidine is added, followed slowly adding triflic anhydride at ?30° C. Salts are then removed by filtration. Tetrazole, followed by a tert-base diisopropylethylamine (DIEA) is added to the triflate solution. After incubation at room temperature, the product is concentrated and purified by a silica gel column using THF/heptane as eluant. The fractions containing the product are collected, concentrated, and purified again using an acetone/heptane column. The product containing fractions are concentrated. The product is dissolved in t-BME and precipitated with heptane. The solids are dissolved in acetone, treated with butylated-hydroxy toluene (BHT), and the solution concentrated.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: March 6, 2012
    Assignee: Abbott Laboratories
    Inventors: Madhup K. Dhaon, Chi-nung Hsiao, Subhash R. Patel, Peter J. Bonk, Sanjay R. Chemburkar, Yong Y. Chen
  • Publication number: 20100204466
    Abstract: A single-step, one-pot process to obtain zotarolimus and other rapamycin derivatives on large scale is presented, which improves currently available synthesis schemes. In one embodiment, dried rapamycin is dissolved in isopropylacetate (IPAc). The solution is cooled, and 2,6-Lutidine is added, followed slowly adding triflic anhydride at ?30° C. Salts are then removed by filtration. Tetrazole, followed by a tert-base diisopropylethylamine (DIEA) is added to the triflate solution. After incubation at room temperature, the product is concentrated and purified by a silica gel column using THF/heptane as eluant. The fractions containing the product are collected, concentrated, and purified again using an acetone/heptane column. The product containing fractions are concentrated. The product is dissolved in t-BME and precipitated with heptane. The solids are dissolved in acetone, treated with butylated-hydroxy toluene (BHT), and the solution concentrated.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 12, 2010
    Inventors: Madhup K. Dhaon, Chi-nung Hsiao, Subhash R. Patel, Peter J. Bonk, Sanjay R. Chemburkar, Yong Chen
  • Patent number: 7700614
    Abstract: A single-step, one-pot process to obtain zotarolimus and other rapamycin derivatives on large scale is presented, which improves currently available synthesis schemes. In one embodiment, dried rapamycin is dissolved in isopropylacetate (IPAc). The solution is cooled, and 2,6-Lutidine is added, followed slowly adding triflic anhydride at ?30° C. Salts are then removed by filtration. Tetrazole, followed by a tert-base diisopropylethylamine (DIEA) is added to the triflate solution. After incubation at room temperature, the product is concentrated and purified by a silica gel column using THF/heptane as eluant. The fractions containing the product are collected, concentrated, and purified again using an acetone/heptane column. The product containing fractions are concentrated. The product is dissolved in t-BME and precipitated with heptane. The solids are dissolved in acetone, treated with butylated-hydroxy toluene (BHT), and the solution concentrated.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: April 20, 2010
    Assignee: Abbott Laboratories
    Inventors: Madhup K. Dhaon, Chi-nung Hsiao, Subhash R. Patel, Peter J. Bonk, Sanjay R. Chemburkar, Yong Chen
  • Publication number: 20080167335
    Abstract: A single-step, one-pot process to obtain zotarolimus and other rapamycin derivatives on large scale is presented, which improves currently available synthesis schemes. In one embodiment, dried rapamycin is dissolved in isopropylacetate (IPAc). The solution is cooled, and 2,6-Lutidine is added, followed slowly adding triflic anhydride at ?30° C. Salts are then removed by filtration. Tetrazole, followed by a tert-base diisopropylethylamine (DIEA) is added to the triflate solution. After incubation at room temperature, the product is concentrated and purified by a silica gel column using THF/heptane as eluant. The fractions containing the product are collected, concentrated, and purified again using an acetone/heptane column. The product containing fractions are concentrated. The product is dissolved in t-BME and precipitated with heptane. The solids are dissolved in acetone, treated with butylated-hydroxy toluene (BHT), and the solution concentrated.
    Type: Application
    Filed: December 14, 2005
    Publication date: July 10, 2008
    Inventors: Madhup K. Dhaon, Chi-nung Hsiao, Subhash R. Patel, Peter J. Bonk, Sanjay R. Chemburkar, Yong Y. Chen
  • Patent number: 7074932
    Abstract: The invention relates to a process for preparing quinoline-substituted carbonate and carbamate compounds, which are important intermediates in the synthesis of 6-O-substituted macrolide antibiotics. The process employs metal-catalyzed coupling reactions to provide a carbonate or carbamate of formula (I) or (II) or a substrate that can be reduced to obtain the same.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: July 11, 2006
    Inventors: Michael S. Allen, Ramiya H. Premchandran, Sou-Jen Chang, Stephen Condon, John A. DeMattei, Steven A. King, Lawrence Kolaczkowski, Sukumar Manna, Paul J. Nichols, Hemant H. Patel, Subhash R. Patel, Daniel J. Plata, Eric J. Stoner, Jien-Heh J. Tien, Steven J. Wittenberger
  • Publication number: 20030199696
    Abstract: The invention relates to a process for preparing quinoline-substituted carbonate and carbamate compounds, which are important intermediates in the synthesis of 6-O-substituted macrolide antibiotics. The process employs metal-catalyzed coupling reactions to provide a carbonate or carbamate of formula (I) or (II) or a substrate that can be reduced to obtain the same.
    Type: Application
    Filed: May 7, 2003
    Publication date: October 23, 2003
    Inventors: Michael S. Allen, Ramiya H. Premchandran, Sou-Jen Chang, Stephen Condon, John A. DeMattei, Steven A. King, Lawrence Kolaczkowski, Sukumar Manna, Paul J. Nichols, Hemant H. Patel, Subhash R. Patel, Daniel J. Plata, Eric J. Stoner, Jien-Heh J. Tien, Steven J. Wittenberger
  • Patent number: 6579986
    Abstract: The invention relates to a process for preparing quinoline-substituted carbonate and carbamate compounds, which are important intermediates in the synthesis of 6-O-substituted macrolide antibiotics. The process employs metal-catalyzed coupling reactions to provide a carbonate or carbamate of formula (I) or (II) or a substrate that can be reduced to obtain the same.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 17, 2003
    Assignee: Abbott Laboratories
    Inventors: Michael S. Allen, Ramiya H. Premchandran, Sou-Jen Chang, Stephen Condon, John A. DeMattei, Steven A. King, Lawrence Kolaczkowski, Sukumar Manna, Paul J. Nichols, Hemant H. Patel, Subhash R. Patel, Daniel J. Plata, Eric J. Stoner, Jien-Heh J. Tien, Steven J. Wittenberger
  • Publication number: 20020165390
    Abstract: The invention relates to a process for preparing quinoline-substituted carbonate and carbamate compounds, which are important intermediates in the synthesis of 6-O-substituted macrolide antibiotics. The process employs metal-catalyzed coupling reactions to provide a carbonate or carbamate of formula (I) or (II) or a substrate that can be reduced to obtain the same.
    Type: Application
    Filed: April 29, 2002
    Publication date: November 7, 2002
    Inventors: Michael S. Allen, Ramiya H. Premchandran, Sou-Jen Chang, Stephen Condon, John A. DeMattei, Steven A. King, Lawrence Kolaczkowski, Sukumar Manna, Paul J. Nichols, Hemant H. Patel, Subhash R. Patel, Daniel J. Plata, Eric J. Stoner, Jien-Heh J. Tien, Steven J. Wittenberger
  • Patent number: 6417366
    Abstract: The invention relates to a process for preparing quinoline-substituted carbonate and carbamate compounds, which are important intermediates in the synthesis of 6-O-substituted macrolide antibiotics. The process employs metal-catalyzed coupling reactions to provide a carbonate or carbamate of formula (I) or (II) or a substrate that can be reduced to obtain the same.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: July 9, 2002
    Assignee: Abbott Laboratories
    Inventors: Michael S. Allen, Ramiya H. Premchandran, Sou-Jen Chang, Stephen Condon, John A. DeMattei, Steven A. King, Lawrence Kolaczkowski, Sukumar Manna, Paul J. Nichols, Hemant H. Patel, Subhash R. Patel, Daniel J. Plata, Eric J. Stoner, Jien-Heh J. Tien, Steven J. Wittenberger
  • Publication number: 20020013468
    Abstract: The invention relates to a process for preparing quinoline-substituted carbonate and carbamate compounds, which are important intermediates in the synthesis of 6-O-substituted macrolide antibiotics. The process employs metal-catalyzed coupling reactions to provide a carbonate or carbamate of formula (I) or (II) or a substrate that can be reduced to obtain the same.
    Type: Application
    Filed: March 3, 2000
    Publication date: January 31, 2002
    Inventors: Michael S. Allen, Ramiya H. Premchandran, Sou-Jen Chang, Stephen Condon, John A. DeMattei, Steven A. King, Lawrence Kolaczkowski, Sukumar Manna, Paul Nichols, Hermant H. Patel, Subhash R. Patel, Daniel J. Plata, Eric J. Stoner, Jien-Heh J. Tien, Steven J. Wittenberger