Patents by Inventor Subramanya P. HERLE

Subramanya P. HERLE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220181601
    Abstract: A method and system for forming lithium anode devices are provided. In one embodiment, the methods and systems form pre-lithiated Group-IV alloy-type nanoparticles (NP's), for example, Li—Z where Z is Ge, Si, or Sn. In another embodiment, the methods and systems synthesize Group-IV nanoparticles and alloy the Group-IV nanoparticles with lithium. The Group-IV nanoparticles can be made on demand and premixed with anode materials or coated on anode materials. In yet another embodiment, the methods and systems form lithium metal-free silver carbon (“Ag—C”) nanocomposites (NC's). In yet another embodiment, a method utilizing silver (PVD) and carbon (PECVD) co-deposition to make anode coatings that can regulate lithium nucleation energy to minimize dendrite formation is provided.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 9, 2022
    Inventors: Alejandro SEVILLA, Ezhiylmurugan RANGASAMY, Subramanya P. HERLE, David Masayuki ISHIKAWA
  • Publication number: 20220162747
    Abstract: Exemplary methods of removing lithium-containing deposits may include heating a surface of a lithium-containing deposit. The surface may include oxygen or nitrogen, and the lithium-containing deposit may be disposed on a surface of a processing chamber. The methods may include contacting the surface of the lithium-containing deposit with a hydrogen-containing precursor. The contacting may hydrogenate the surface of the lithium-containing deposit. The methods may include contacting the lithium-containing deposit with a nitrogen-containing precursor to form volatile byproducts. The methods may include exhausting the volatile byproducts of the lithium-containing deposit from the processing chamber.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Tapash Chakraborty, Nitin Deepak, Prerna Sonthalia Goradia, Bahubali S. Upadhye, Nilesh Chimanrao Bagul, Subramanya P. Herle, Visweswaren Sivaramakrishnan
  • Publication number: 20220158159
    Abstract: Methods, systems, and apparatuses for coating flexible substrates are provided. A coating system includes an unwinding module housing a feed reel capable of providing a continuous sheet of flexible material, a winding module housing a take-up reel capable of storing the continuous sheet of flexible material, and a processing module arranged downstream from the unwinding module. The processing module includes a plurality of sub-chambers arranged in sequence, each configured to perform one or more processing operations to the continuous sheet of flexible material. The processing module includes a coating drum capable of guiding the continuous sheet of flexible material past the plurality of sub-chambers along a travel direction. The sub-chambers are radially disposed about the coating drum and at least one of the sub-chambers includes a deposition module. The deposition module includes a pair of electron beam sources positioned side-by-side along a transverse direction perpendicular to the travel direction.
    Type: Application
    Filed: November 16, 2021
    Publication date: May 19, 2022
    Inventors: David Masayuki ISHIKAWA, Ezhiylmurugan RANGASAMY, Kiran VACHHANI, Subramanya P. HERLE, Girish Kumar GOPALAKRISHNAN NAIR
  • Publication number: 20220152693
    Abstract: A method and apparatus for manufacturing a flexible layer stack, and to a flexible layer stack. Implementations of the present disclosure particularly relate to a method and apparatus for coating flexible substrates with a low melting temperature metal or metal alloy. In one implementation, a method is provided. The method includes delivering a transfer liquid to a quenching surface of a rotating casting drum. The method further includes forming a material layer stack over the rotating casting drum by delivering a molten metal or molten metal alloy toward the quenching surface of the rotating casting drum. The method further includes transferring the material layer stack from the rotating casting drum to a continuous flexible substrate, wherein the quenching surface of the rotating casting drum is cooled to a temperature at which the layers of the material layer stack solidify.
    Type: Application
    Filed: November 23, 2021
    Publication date: May 19, 2022
    Inventor: Subramanya P. HERLE
  • Publication number: 20220080496
    Abstract: A method and apparatus for manufacturing a flexible layer stack, and to a flexible layer stack. Implementations of the present disclosure particularly relate to a method and apparatus for coating flexible substrates with a low melting temperature metal or metal alloy. In one implementation, a method is provided. The method includes delivering a transfer liquid to a quenching surface of a rotating casting drum. The method further includes forming a material layer stack over the rotating casting drum by delivering a molten metal or molten metal alloy toward the quenching surface of the rotating casting drum. The method further includes transferring the material layer stack from the rotating casting drum to a continuous flexible substrate, wherein the quenching surface of the rotating casting drum is cooled to a temperature at which the layers of the material layer stack solidify.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Inventor: Subramanya P. HERLE
  • Patent number: 11276886
    Abstract: Embodiments of the invention generally relate to solid state battery structures, such as Li-ion batteries, methods of fabrication and tools for fabricating the batteries. One or more electrodes and the separator may each be cast using a green tape approach wherein a mixture of active material, conductive additive, polymer binder and/or solid electrolyte are molded or extruded in a roll to roll or segmented sheet/disk process to make green tape, green disks or green sheets. A method of fabricating a solid state battery may include: preparing and/or providing a green sheet of positive electrode material; preparing and/or providing a green sheet of separator material; laminating together the green sheet of positive electrode material and the green sheet of separator material to form a laminated green stack; and sintering the laminated green stack to form a sintered stack comprising a positive electrode and a separator.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: March 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Subramanya P. Herle, Joseph G. Gordon, II
  • Publication number: 20220052307
    Abstract: A method and system for fabricating a pre-lithiated electrode structure are provided. The method includes supplying a first continuous web substrate from an unwinder roller to a winder roller. The first continuous web substrate includes a layer of lithium metal. The method further includes supplying a second continuous web substrate comprising a layer of patterned anode material adjacent to the first continuous web substrate. The first continuous web substrate and the second continuous web substrate are wound together on the unwinder roller, wherein a surface of the layer of anode material contacts a surface of the layer of lithium metal. Pressure is applied to the first continuous web substrate and the second continuous web substrate to pre-lithiate the patterned anode material, wherein applying pressure comprises tensioning at least one of the unwinder roller and the winder roller.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 17, 2022
    Inventors: Ezhiylmurugan RANGASAMY, Jean DELMAS, Bernard FREY, Subramanya P. HERLE, Girish Kumar GOPALAKRISHNAN NAIR
  • Patent number: 11185915
    Abstract: A method and apparatus for manufacturing a flexible layer stack, and to a flexible layer stack. Implementations of the present disclosure particularly relate to a method and apparatus for coating flexible substrates with a low melting temperature metal or metal alloy. In one implementation, a method is provided. The method includes delivering a transfer liquid to a quenching surface of a rotating casting drum. The method further includes forming a material layer stack over the rotating casting drum by delivering a molten metal or molten metal alloy toward the quenching surface of the rotating casting drum. The method further includes transferring the material layer stack from the rotating casting drum to a continuous flexible substrate, wherein the quenching surface of the rotating casting drum is cooled to a temperature at which the layers of the material layer stack solidify.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: November 30, 2021
    Assignee: Applied Materials, Inc.
    Inventor: Subramanya P. Herle
  • Patent number: 11180849
    Abstract: An apparatus for direct liquid injection (DLI) of chemical precursors into a processing chamber is provided. The apparatus includes a vaporizer assembly having an injection valve for receiving a liquid reactant, vaporizing the liquid reactant, and delivering the vaporized liquid reactant. The injection valve includes a valve body encompassing an interior region therein, a gas inlet port, a liquid inlet port, and a vapor outlet port all in fluid communication with the interior region. The vaporizer assembly further includes a first inlet line having a first end fluidly coupled with the liquid inlet port and a second end to be connected to a liquid source. The vaporizer assembly further includes a second inlet line with a first end fluidly coupled with the gas inlet port, a second end fluidly coupled with a carrier gas source, and a heater positioned between the first end and the second end.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: November 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Subramanya P. Herle, Vicente M. Lim, Basavaraj Pattanshetty, Ajay More, Marco Mohr, Bjoern Sticksel-Weis, Nilesh Chimanrao Bagul, Visweswaren Sivaramakrishnan
  • Publication number: 20210328308
    Abstract: Separators, high performance electrochemical devices, such as, batteries and capacitors, including the aforementioned separators, systems and methods for fabricating the same. In one implementation, a separator is provided. The separator comprises a polymer substrate (131), capable of conducting ions, having a first surface and a second surface opposing the first surface. The separator further comprises a first ceramic-containing layer (136), capable of conducting ions, formed on the first surface. The first ceramic-containing layer (136) has a thickness in arrange from about 1,000 nanometers to about 5000 nanometers. The separator further comprises a second ceramic-containing layer (138), capable of conducting ions, formed on the second surface. The second ceramic-containing layer (138) is a binder-free ceramic-containing layer and has a thickness in arrange from about 1 nanometer to about 1,000 nanometers.
    Type: Application
    Filed: August 21, 2018
    Publication date: October 21, 2021
    Inventors: Connie P. WANG, Wen SI, Yin Let SIM, Torsten DIETER, Roland TRASSL, Subramanya P. HERLE, Christoph DAUBE, Jian ZHU, James CUSHING
  • Publication number: 20210210752
    Abstract: Implementations described herein generally relate to metal electrodes, more specifically lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same. In one implementation, an anode electrode structure is provided. The anode electrode structure comprises a current collector comprising copper. The anode electrode structure further comprises a lithium metal film formed on the current collector. The anode electrode structure further comprises a solid electrolyte interface (SEI) film stack formed on the lithium metal film. The SEI film stack comprises a chalcogenide film formed on the lithium metal film. In one implementation, the SEI film stack further comprises a lithium oxide film formed on the chalcogenide film. In one implementation, the SEI film stack further comprises a lithium carbonate film formed on the lithium oxide film.
    Type: Application
    Filed: March 8, 2021
    Publication date: July 8, 2021
    Inventors: Girish Kumar GOPALAKRISHNAN NAIR, Subramanya P. HERLE, Karl J. ARMSTRONG
  • Publication number: 20210184208
    Abstract: In one implementation, an integrated processing tool for the deposition and processing of lithium metal in energy storage devices. The integrated processing tool may be a web tool. The integrated processing tool may comprises a reel-to-reel system for transporting a continuous sheet of material through the following chambers: a chamber for depositing a thin film of lithium metal on the continuous sheet of material and a chamber for depositing a protective film on the surface of the thin film of lithium metal. The chamber for depositing a thin film of lithium metal may include a PVD system, such as an electron-beam evaporator, a thin film transfer system, or a slot-die deposition system. The chamber for depositing a protective film on the lithium metal film may include a chamber for depositing an interleaf film or a chamber for depositing a lithium-ion conducting polymer on the lithium metal film.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: Subramanya P. HERLE, Dieter HAAS
  • Publication number: 20210126247
    Abstract: A method and apparatus for forming an anode electrode structure are provided. The deposition apparatus comprises a first spool chamber capable of housing a storage spool operable to provide the flexible substrate. The deposition apparatus further comprises a first deposition chamber arranged downstream from the first spool chamber. The first deposition chamber comprises a first coating drum capable of guiding the flexible substrate past a first plurality of deposition units capable of depositing lithium metal on the flexible substrate. The deposition apparatus further comprises a second deposition chamber arranged downstream from the first deposition chamber. The second deposition chamber comprises a second coating drum capable for guiding the flexible substrate past a second deposition unit comprising an evaporation crucible capable of depositing a ceramic protective film on the lithium metal film.
    Type: Application
    Filed: October 19, 2020
    Publication date: April 29, 2021
    Inventors: Subramanya P. HERLE, David Masayuki ISHIKAWA
  • Patent number: 10978699
    Abstract: In one implementation, an integrated processing tool for the deposition and processing of lithium metal in energy storage devices. The integrated processing tool may be a web tool. The integrated processing tool may comprises a reel-to-reel system for transporting a continuous sheet of material through the following chambers: a chamber for depositing a thin film of lithium metal on the continuous sheet of material and a chamber for depositing a protective film on the surface of the thin film of lithium metal. The chamber for depositing a thin film of lithium metal may include a PVD system, such as an electron-beam evaporator, a thin film transfer system, or a slot-die deposition system. The chamber for depositing a protective film on the lithium metal film may include a chamber for depositing an interleaf film or a chamber for depositing a lithium-ion conducting polymer on the lithium metal film.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: April 13, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Subramanya P. Herle, Dieter Haas
  • Patent number: 10944103
    Abstract: Implementations described herein generally relate to metal electrodes, more specifically lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same. In one implementation, an anode electrode structure is provided. The anode electrode structure comprises a current collector comprising copper. The anode electrode structure further comprises a lithium metal film formed on the current collector. The anode electrode structure further comprises a solid electrolyte interface (SEI) film stack formed on the lithium metal film. The SEI film stack comprises a chalcogenide film formed on the lithium metal film. In one implementation, the SEI film stack further comprises a lithium oxide film formed on the chalcogenide film. In one implementation, the SEI film stack further comprises a lithium carbonate film formed on the lithium oxide film.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: March 9, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Girish Kumar Gopalakrishnan Nair, Subramanya P. Herle, Karl Armstrong
  • Publication number: 20210062318
    Abstract: A web coating platform for depositing molten metal on flexible substrates is provided. The web coating platform can be used for manufacturing solid lithium anodes for use in energy storage devices, for example, rechargeable batteries. The coating platform can be designed for double-sided coating of a continuous flexible substrate (e.g., a copper foil) with molten lithium followed by double-sided lamination or passivation. The coating platform integrates novel coating elements unique to handling and processing molten metals. For example, some implementations of the present disclosure incorporate double-sided molten metal coating elements, which include at least one of a molten metal application assembly (e.g., kiss roller, slot-die, Meyer bar, and/or gravure roller), a primary melt pool assembly, a secondary melt pool assembly, and an engagement mechanism.
    Type: Application
    Filed: August 18, 2020
    Publication date: March 4, 2021
    Inventors: Bernard FREY, Subramanya P. HERLE
  • Publication number: 20210060638
    Abstract: A method and apparatus for manufacturing a flexible layer stack, and to a flexible layer stack. Implementations of the present disclosure particularly relate to a method and apparatus for coating flexible substrates with a low melting temperature metal or metal alloy. In one implementation, a method is provided. The method includes delivering a transfer liquid to a quenching surface of a rotating casting drum. The method further includes forming a material layer stack over the rotating casting drum by delivering a molten metal or molten metal alloy toward the quenching surface of the rotating casting drum. The method further includes transferring the material layer stack from the rotating casting drum to a continuous flexible substrate, wherein the quenching surface of the rotating casting drum is cooled to a temperature at which the layers of the material layer stack solidify.
    Type: Application
    Filed: August 18, 2020
    Publication date: March 4, 2021
    Inventor: Subramanya P. HERLE
  • Patent number: 10916761
    Abstract: Implementations described herein generally relate to low melting temperature metal or alloy metal deposition and processing. More particularly, the implementations described herein relate to methods and systems for low melting temperature metal or alloy metal deposition and processing for printed electronics and electrochemical devices. In yet another implementation, a method is provided. The method comprises exposing a molten metal source to a purification process to remove unwanted quantities of contaminants, delivering the filtered molten metal to a three dimensional printing device, and forming a metal film on a substrate by printing the filtered molten metal on the substrate. The purification process comprises delivering the molten metal to a filter assembly, wherein the filter assembly includes at least one of: a skimmer device, a metal mesh filter, and a foam filter, and filtering the molten metal through the filter assembly.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: February 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Subramanya P. Herle, Bernard Frey, Dieter Haas
  • Publication number: 20200395618
    Abstract: Interfacial films, which are both electronic conducting and ion conducting, for anode films are provided. The one or more protective films described herein may be mixed conduction materials, which are both electronic conducting and ion-conducting. The one or more protective films described herein may include materials selected from lithium transition metal dichalcogenides, Li9Ti5O12, or a combination thereof. The lithium transition metal dichalcogenide includes a transition metal dichalcogenide having the formula MX2, wherein M is selected from Ti, Mo, or W and X is selected from S, Se, or Te. The transition metal dichalcogenide may be selected from TiS2, MoS2, WS2, or a combination thereof. The lithium transition metal dichalcogenide may be selected from lithium-titanium-disulfide (e.g., LiTiS2), lithium-tungsten-disulfide (e.g., LiWS2), lithium-molybdenum-disulfide (e.g., LiMoS2), or a combination thereof.
    Type: Application
    Filed: January 30, 2020
    Publication date: December 17, 2020
    Inventors: Ezhiylmurugan RANGASAMY, Subramanya P. HERLE
  • Publication number: 20200373536
    Abstract: Implementations of the present disclosure generally relate to separators, high performance electrochemical devices, such as, batteries and capacitors, including the aforementioned separators, and methods for fabricating the same. In one implementation, a method of forming a separator for a battery is provided. The method comprises exposing a metallic material to be deposited on a surface of an electrode structure positioned in a processing region to an evaporation process. The method further comprises flowing a reactive gas into the processing region. The method further comprises reacting the reactive gas and the evaporated metallic material to deposit a ceramic separator layer on the surface of the electrode structure.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Inventor: Subramanya P. HERLE