Patents by Inventor Subrata K. Dutta

Subrata K. Dutta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6898221
    Abstract: An apparatus comprising a first reference element having an output power that varies monotonically with input frequency over an operating frequency range and receiving at least a portion of an output beam of light from an optical source. A second reference element having an output power that is frequency dependent receives at least a portion of the output beam of light. A first optical detector measures the power of a first reference beam of light from the first reference element. A second optical detector measures the power of a second reference beam of light from the second reference element. Electronic circuitry is coupled to the first and second optical detectors for receiving first and second reference signals therefrom and producing a coarse error signal for permitting coarse adjustment and a fine error signal for permitting fine adjustment of the frequency of the output beam of light.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: May 24, 2005
    Assignee: Iolon, Inc.
    Inventors: Jill D. Berger, Subrata K. Dutta, Alan A. Fennema, Olga A. Gorbounova, Stephen J. Hrinya, Fedor A. Ilkov, David A. King, Heather L. Tavernier, Alexander A. Tselikov
  • Publication number: 20020164125
    Abstract: An apparatus comprising a first reference element having an output power that varies monotonically with input frequency over an operating frequency range and receiving at least a portion of an output beam of light from an optical source. A second reference element having an output power that is frequency dependent receives at least a portion of the output beam of light. A first optical detector measures the power of a first reference beam of light from the first reference element. A second optical detector measures the power of a second reference beam of light from the second reference element. Electronic circuitry is coupled to the first and second optical detectors for receiving first and second reference signals therefrom and producing a coarse error signal for permitting coarse adjustment and a fine error signal for permitting fine adjustment of the frequency of the output beam of light.
    Type: Application
    Filed: March 15, 2002
    Publication date: November 7, 2002
    Inventors: Jill D. Berger, Subrata K. Dutta, Alan A. Fennema, Olga A. Gorbounova, Stephen J. Hrinya, Fedor A. Ilkov, David A. King, Heather L. Tavernier, Alexander A. Tselikov
  • Patent number: 5656186
    Abstract: In one aspect the invention provides a method for laser induced breakdown of a material with a pulsed laser beam where the material is characterized by a relationship of fluence breakdown threshold (F.sub.th) versus laser beam pulse width (T) that exhibits an abrupt, rapid, and distinct change or at least a clearly detectable and distinct change in slope at a predetermined laser pulse width value. The method comprises generating a beam of laser pulses in which each pulse has a pulse width equal to or less than the predetermined laser pulse width value. The beam is focused to a point at or beneath the surface of a material where laser induced breakdown is desired.The beam may be used in combination with a mask in the beam path. The beam or mask may be moved in the x, y, and Z directions to produce desired features. The technique can produce features smaller than the spot size and Rayleigh range due to enhanced damage threshold accuracy in the short pulse regime.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: August 12, 1997
    Assignee: The Regents of the University of Michigan
    Inventors: Gerard A. Mourou, Detao Du, Subrata K. Dutta, Victor Elner, Ron Kurtz, Paul R. Lichter, Xinbing Liu, Peter P. Pronko, Jeffrey A. Squier
  • Patent number: RE37585
    Abstract: In one aspect the invention provides a method for laser induced breakdown of a material with a pulsed laser beam where the material is characterized by a relationship of fluence breakdown threshold (Fth) versus laser beam pulse width (T) that exhibits an abrupt, rapid, and distinct change or at least a clearly detectable and distinct change in slope at a predetermined laser pulse width value. The method comprises generating a beam of laser pulses in which each pulse has a pulse width equal to or less than the predetermined laser pulse width value. The beam is focused to a point at or beneath the surface of a material where laser induced breakdown is desired. The beam may be used in combination with a mask in the beam path. The beam or mask may be moved in the x, y, and Z directions to produce desired features. The technique can produce features smaller than the spot size and Rayleigh range due to enhanced damage threshold accuracy in the short pulse regime.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: March 19, 2002
    Assignee: The Regents of the University of Michigan
    Inventors: GĂ©rard Mourou, Detao Du, Subrata K. Dutta, Victor Elner, Ron Kurtz, Paul R. Lichter, Xinbing Liu, Peter P. Pronko, Jeffrey A. Squier