Patents by Inventor Sucharita Chakraborty

Sucharita Chakraborty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10560302
    Abstract: In distributed communication networks, the signal received at the destination is characterized by unknown multiple carrier frequency offsets (MCFOs) and improper channel state information (CSI). The knowledge of offsets and channel gains are required for coherent deployment of distributed systems. Hence, joint training sequence (TS) design method is proposed for joint estimation of MCFOs and channel estimation over spatially correlated channel. Thus, the present invention provides a method of providing joint estimation for distributed communication systems with multiple antennas at the nodes over spatial correlated channels. The designed optimal training sequences are short length and spectrally efficient. The designed training sequence produces zero cross-correlation, facilitating channel estimation without matrix inversion, significantly lowers the complexity of the estimation algorithm.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 11, 2020
    Assignee: Indian Institute of Technology Kharagpur
    Inventors: Sucharita Chakraborty, Debarati Sen
  • Publication number: 20190068426
    Abstract: In distributed communication networks, the signal received at the destination is characterized by unknown multiple carrier frequency offsets (MCFOs) and improper channel state information (CSI). The knowledge of offsets and channel gains are required for coherent deployment of distributed systems. Hence, joint training sequence (TS) design method is proposed for joint estimation of MCFOs and channel estimation over spatially correlated channel. Thus, the present invention provides a method of providing joint estimation for distributed communication systems with multiple antennas at the nodes over spatial correlated channels. The designed optimal training sequences are short length and spectrally efficient. The designed training sequence produces zero cross-correlation, facilitating channel estimation without matrix inversion, significantly lowers the complexity of the estimation algorithm.
    Type: Application
    Filed: August 28, 2018
    Publication date: February 28, 2019
    Inventors: Sucharita Chakraborty, Debarati Sen