Patents by Inventor Suchitra Sundararaman
Suchitra Sundararaman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250054070Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes receiving receipt data associated with an entity. Policy questions associated with the entity are associated with at least one policy question answer that corresponds to a conformance or a violation of a policy selected by the entity. For each policy question, a machine learning policy model is identified for the policy question that includes, for each policy question answer, receipt data features that correspond to the policy question answer. The machine learning policy model is used to automatically determine a selected policy question answer to the policy question by comparing features of extracted tokens to respective receipt data features of the policy question answers that are included in the machine learning policy model. In response to determining that the selected policy question answer corresponds to a policy violation, an audit alert is generated.Type: ApplicationFiled: October 29, 2024Publication date: February 13, 2025Inventors: Michael Stark, Evan Adkins, Adithya Kumar, Suchitra Sundararaman, Jesper Lind
-
Patent number: 12154179Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes receiving receipt data associated with an entity. Policy questions associated with the entity are associated with at least one policy question answer that corresponds to a conformance or a violation of a policy selected by the entity. For each policy question, a machine learning policy model is identified for the policy question that includes, for each policy question answer, receipt data features that correspond to the policy question answer. The machine learning policy model is used to automatically determine a selected policy question answer to the policy question by comparing features of extracted tokens to respective receipt data features of the policy question answers that are included in the machine learning policy model. In response to determining that the selected policy question answer corresponds to a policy violation, an audit alert is generated.Type: GrantFiled: September 1, 2021Date of Patent: November 26, 2024Assignee: SAP SEInventors: Michael Stark, Evan Adkins, Adithya Kumar, Suchitra Sundararaman, Jesper Lind
-
Patent number: 12136088Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes determining valid pixel-based pattern(s) that are included in valid reference images. Fraudulent pixel-based pattern(s) that are included in fraudulent reference images are determined. A request to classify an image is received. A determination is made as to whether pixel values in the image match a valid pixel-based pattern or a fraudulent pixel-based pattern. In response to determining that the pixel values match a valid pixel-based pattern, a likelihood of classifying the first image as a valid image is increased. In response to determining that the pixel values match a fraudulent pixel-based pattern, a likelihood that the image as a fraudulent image is increased. The image is classified in response to the request as either a valid image or a fraudulent image based on the likelihoods.Type: GrantFiled: April 11, 2022Date of Patent: November 5, 2024Assignee: SAP SEInventors: Jesper Lind, Suchitra Sundararaman
-
Patent number: 12136089Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes determining valid pixel-based pattern(s) that are included in valid reference images. Fraudulent pixel-based pattern(s) that are included in fraudulent reference images are determined. A request to classify an image is received. A determination is made as to whether pixel values in the image match a valid pixel-based pattern or a fraudulent pixel-based pattern. In response to determining that the pixel values match a valid pixel-based pattern, a likelihood of classifying the first image as a valid image is increased. In response to determining that the pixel values match a fraudulent pixel-based pattern, a likelihood that the image as a fraudulent image is increased. The image is classified in response to the request as either a valid image or a fraudulent image based on the likelihoods.Type: GrantFiled: April 11, 2022Date of Patent: November 5, 2024Assignee: SAP SEInventors: Jesper Lind, Suchitra Sundararaman
-
Patent number: 12073397Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes determining valid pixel-based pattern(s) that are included in valid reference images. Fraudulent pixel-based pattern(s) that are included in fraudulent reference images are determined. A request to classify an image is received. A determination is made as to whether pixel values in the image match a valid pixel-based pattern or a fraudulent pixel-based pattern. In response to determining that the pixel values match a valid pixel-based pattern, a likelihood of classifying the first image as a valid image is increased. In response to determining that the pixel values match a fraudulent pixel-based pattern, a likelihood that the image as a fraudulent image is increased. The image is classified in response to the request as either a valid image or a fraudulent image based on the likelihoods.Type: GrantFiled: April 11, 2022Date of Patent: August 27, 2024Assignee: SAP SEInventors: Jesper Lind, Suchitra Sundararaman
-
Patent number: 12039615Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes training at least one machine learning model to determine features that can be used to determine whether an image is an authentic image of a document or an automatically generated document image, using a training set of authentic images and a training set of automatically generated document images. A request to classify an image as either an authentic image of a document or an automatically generated document image is received. The machine learning model(s) are used to classify the image as either an authentic image of a document or an automatically generated document image, based on features included in the image that are identified by the machine learning model(s). A classification of the image is provided. The machine learning model(s) are updated based on the image and the classification of the image.Type: GrantFiled: January 4, 2023Date of Patent: July 16, 2024Assignee: SAP SEInventors: Suchitra Sundararaman, Jesper Lind, Juliy Broyda, Lev Sigal, Anton Ioffe, Yuri Arshavski
-
Patent number: 11568400Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes training at least one machine learning model to determine features that can be used to determine whether an image is an authentic image of a document or an automatically generated document image, using a training set of authentic images and a training set of automatically generated document images. A request to classify an image as either an authentic image of a document or an automatically generated document image is received. The machine learning model(s) are used to classify the image as either an authentic image of a document or an automatically generated document image, based on features included in the image that are identified by the machine learning model(s). A classification of the image is provided. The machine learning model(s) are updated based on the image and the classification of the image.Type: GrantFiled: December 12, 2019Date of Patent: January 31, 2023Assignee: SAP SEInventors: Suchitra Sundararaman, Jesper Lind, Juliy Broyda, Lev Sigal, Anton Ioffe, Yuri Arshavski
-
Publication number: 20220237605Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes determining valid pixel-based pattern(s) that are included in valid reference images. Fraudulent pixel-based pattern(s) that are included in fraudulent reference images are determined. A request to classify an image is received. A determination is made as to whether pixel values in the image match a valid pixel-based pattern or a fraudulent pixel-based pattern. In response to determining that the pixel values match a valid pixel-based pattern, a likelihood of classifying the first image as a valid image is increased. In response to determining that the pixel values match a fraudulent pixel-based pattern, a likelihood that the image as a fraudulent image is increased. The image is classified in response to the request as either a valid image or a fraudulent image based on the likelihoods.Type: ApplicationFiled: April 11, 2022Publication date: July 28, 2022Inventors: Jesper Lind, Suchitra Sundararaman
-
Publication number: 20220237604Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes determining valid pixel-based pattern(s) that are included in valid reference images. Fraudulent pixel-based pattern(s) that are included in fraudulent reference images are determined. A request to classify an image is received. A determination is made as to whether pixel values in the image match a valid pixel-based pattern or a fraudulent pixel-based pattern. In response to determining that the pixel values match a valid pixel-based pattern, a likelihood of classifying the first image as a valid image is increased. In response to determining that the pixel values match a fraudulent pixel-based pattern, a likelihood that the image as a fraudulent image is increased. The image is classified in response to the request as either a valid image or a fraudulent image based on the likelihoods.Type: ApplicationFiled: April 11, 2022Publication date: July 28, 2022Inventors: Jesper Lind, Suchitra Sundararaman
-
Publication number: 20220237606Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes determining valid pixel-based pattern(s) that are included in valid reference images. Fraudulent pixel-based pattern(s) that are included in fraudulent reference images are determined. A request to classify an image is received. A determination is made as to whether pixel values in the image match a valid pixel-based pattern or a fraudulent pixel-based pattern. In response to determining that the pixel values match a valid pixel-based pattern, a likelihood of classifying the first image as a valid image is increased. In response to determining that the pixel values match a fraudulent pixel-based pattern, a likelihood that the image as a fraudulent image is increased. The image is classified in response to the request as either a valid image or a fraudulent image based on the likelihoods.Type: ApplicationFiled: April 11, 2022Publication date: July 28, 2022Inventors: Jesper Lind, Suchitra Sundararaman
-
Patent number: 11308492Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes determining valid pixel-based pattern(s) that are included in valid reference images. Fraudulent pixel-based pattern(s) that are included in fraudulent reference images are determined. A request to classify an image is received. A determination is made as to whether pixel values in the image match a valid pixel-based pattern or a fraudulent pixel-based pattern. In response to determining that the pixel values match a valid pixel-based pattern, a likelihood of classifying the first image as a valid image is increased. In response to determining that the pixel values match a fraudulent pixel-based pattern, a likelihood that the image as a fraudulent image is increased. The image is classified in response to the request as either a valid image or a fraudulent image based on the likelihoods.Type: GrantFiled: December 12, 2019Date of Patent: April 19, 2022Assignee: SAP SEInventors: Jesper Lind, Suchitra Sundararaman
-
Publication number: 20210398118Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes receiving receipt data associated with an entity. Policy questions associated with the entity are associated with at least one policy question answer that corresponds to a conformance or a violation of a policy selected by the entity. For each policy question, a machine learning policy model is identified for the policy question that includes, for each policy question answer, receipt data features that correspond to the policy question answer. The machine learning policy model is used to automatically determine a selected policy question answer to the policy question by comparing features of extracted tokens to respective receipt data features of the policy question answers that are included in the machine learning policy model. In response to determining that the selected policy question answer corresponds to a policy violation, an audit alert is generated.Type: ApplicationFiled: September 1, 2021Publication date: December 23, 2021Inventors: Michael Stark, Evan Adkins, Adithya Kumar, Suchitra Sundararaman, Jesper Lind
-
Patent number: 11113689Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes receiving receipt data associated with an entity. Policy questions associated with the entity are associated with at least one policy question answer that corresponds to a conformance or a violation of a policy selected by the entity. For each policy question, a machine learning policy model is identified for the policy question that includes, for each policy question answer, receipt data features that correspond to the policy question answer. The machine learning policy model is used to automatically determine a selected policy question answer to the policy question by comparing features of extracted tokens to respective receipt data features of the policy question answers that are included in the machine learning policy model. In response to determining that the selected policy question answer corresponds to a policy violation, an audit alert is generated.Type: GrantFiled: September 20, 2019Date of Patent: September 7, 2021Assignee: SAP SEInventors: Michael Stark, Evan Adkins, Adithya Kumar, Suchitra Sundararaman, Jesper Lind
-
Publication number: 20210004798Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes receiving receipt data associated with an entity. Policy questions associated with the entity are associated with at least one policy question answer that corresponds to a conformance or a violation of a policy selected by the entity. For each policy question, a machine learning policy model is identified for the policy question that includes, for each policy question answer, receipt data features that correspond to the policy question answer. The machine learning policy model is used to automatically determine a selected policy question answer to the policy question by comparing features of extracted tokens to respective receipt data features of the policy question answers that are included in the machine learning policy model. In response to determining that the selected policy question answer corresponds to a policy violation, an audit alert is generated.Type: ApplicationFiled: September 20, 2019Publication date: January 7, 2021Inventors: Michael Stark, Evan Adkins, Adithya Kumar, Suchitra Sundararaman, Jesper Lind
-
Publication number: 20210004810Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes determining valid pixel-based pattern(s) that are included in valid reference images. Fraudulent pixel-based pattern(s) that are included in fraudulent reference images are determined. A request to classify an image is received. A determination is made as to whether pixel values in the image match a valid pixel-based pattern or a fraudulent pixel-based pattern. In response to determining that the pixel values match a valid pixel-based pattern, a likelihood of classifying the first image as a valid image is increased. In response to determining that the pixel values match a fraudulent pixel-based pattern, a likelihood that the image as a fraudulent image is increased. The image is classified in response to the request as either a valid image or a fraudulent image based on the likelihoods.Type: ApplicationFiled: December 12, 2019Publication date: January 7, 2021Inventors: Jesper Lind, Suchitra Sundararaman
-
Publication number: 20210004580Abstract: The present disclosure involves systems, software, and computer implemented methods for transaction auditing. One example method includes training at least one machine learning model to determine features that can be used to determine whether an image is an authentic image of a document or an automatically generated document image, using a training set of authentic images and a training set of automatically generated document images. A request to classify an image as either an authentic image of a document or an automatically generated document image is received. The machine learning model(s) are used to classify the image as either an authentic image of a document or an automatically generated document image, based on features included in the image that are identified by the machine learning model(s). A classification of the image is provided. The machine learning model(s) are updated based on the image and the classification of the image.Type: ApplicationFiled: December 12, 2019Publication date: January 7, 2021Inventors: Suchitra Sundararaman, Jesper Lind, Juliy Broyda, Lev Sigal, Anton Ioffe, Yuri Arshavski