Patents by Inventor Sudeep Bhoja

Sudeep Bhoja has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190372607
    Abstract: The present invention is directed to data communication. More specifically, an embodiment of the present invention provides an error correction system. Input data signals are processed by a feedforward equalization module and a decision feedback back equalization module. Decisions generated by the decision feedback equalization module are processed by an error detection module, which determines error events associated with the decisions. The error detection module implements a reduced state trellis path. There are other embodiments as well.
    Type: Application
    Filed: July 18, 2019
    Publication date: December 5, 2019
    Inventors: Jamal Riani, Farshid Rafiee Rad, Benjamin P. Smith, Yu Liao, Sudeep Bhoja
  • Patent number: 10498570
    Abstract: Embodiments of the present invention include an apparatus that receives date from multiple lanes, which are then aligned and synchronized for transcoding and encoding.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: December 3, 2019
    Assignee: INPHI CORPORATION
    Inventors: Arun Tiruvur, Jamal Riani, Sudeep Bhoja
  • Publication number: 20190334623
    Abstract: The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using nDSQ format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices, such as spine switches and leaf switches, within a spine-leaf network architecture, which allows large amount of data to be shared among servers.
    Type: Application
    Filed: July 10, 2019
    Publication date: October 31, 2019
    Inventors: Jamal RIANI, Sudeep BHOJA
  • Publication number: 20190305884
    Abstract: The present invention relates to data communication systems and methods thereof. More specifically, embodiments of the present invention provide a data transmission method. Data are encoded with staircase encoder, and staircase coded blocks are first interleaved then combined into outer code frames. Code frames additionally include sync words and padding bits. A second interleaving is applied to the bits of the code frames, and Hamming encoding is performed on the output of the second interleaver. Hamming codewords are Gray-mapped to dual-polarized quadrature-amplitude-modulation (DP-QAM) symbols, and a third interleaving of the symbols from a set of successive Hamming codewords is performed. Pilot symbols are inserted periodically into the stream of DP-QAM symbols. There are other embodiments as well.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Inventors: Benjamin P. SMITH, Jamal RIANI, Arash FARHOODFAR, Sudeep BHOJA
  • Patent number: 10404289
    Abstract: The present invention is directed to data communication. More specifically, an embodiment of the present invention provides an error correction system. Input data signals are processed by a feedforward equalization module and a decision feedback back equalization module. Decisions generated by the decision feedback equalization module are processed by an error detection module, which determines error events associated with the decisions. The error detection module implements a reduced state trellis path. There are other embodiments as well.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: September 3, 2019
    Assignee: INPHI CORPORATION
    Inventors: Jamal Riani, Farshid Rafiee Rad, Benjamin Smith, Yu Liao, Sudeep Bhoja
  • Publication number: 20190268091
    Abstract: The present invention is directed to data communication systems and techniques thereof. More specifically, embodiments of the present invention provide an FEC encoder that generates parity symbols that are embedded into FEC blocks. An FEC decoder determines whether to perform error correction based on the parity symbols. When performing error correction, the decoder selects a worst symbol from a segment of symbols, and the worst symbol is corrected. There are other embodiments as well.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 29, 2019
    Inventors: Jamal RIANI, Benjamin P. SMITH, Volodymyr SHVYDUN, Sudeep BHOJA, Arash FARHOODFAR
  • Patent number: 10396896
    Abstract: The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using nDSQ format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices, such as spine switches and leaf switches, within a spine-leaf network architecture, which allows large amount of data to be shared among servers.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: August 27, 2019
    Assignee: INPHI CORPORATION
    Inventors: Jamal Riani, Sudeep Bhoja
  • Patent number: 10374752
    Abstract: The present invention relates to data communication systems and methods thereof. More specifically, embodiments of the present invention provide a data transmission method. Data are encoded with staircase encoder, and staircase coded blocks are first interleaved then combined into outer code frames. Code frames additionally include sync words and padding bits. A second interleaving is applied to the bits of the code frames, and Hamming encoding is performed on the output of the second interleaver. Hamming codewords are Gray-mapped to dual-polarized quadrature-amplitude-modulation (DP-QAM) symbols, and a third interleaving of the symbols from a set of successive Hamming codewords is performed. Pilot symbols are inserted periodically into the stream of DP-QAM symbols. There are other embodiments as well.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: August 6, 2019
    Assignee: INPHI CORPORATION
    Inventors: Benjamin Smith, Jamal Riani, Arash Farhoodfar, Sudeep Bhoja
  • Patent number: 10355886
    Abstract: The present invention is directed to data communication systems and methods. More specifically, embodiments of the present invention provide techniques for transceivers to quickly identify FEC mode used in data communication. A transmitting transceiver embeds FEC mode information in a designated field of an alignment marker. The receiving transceiver acknowledges the receipt of the FEC mode information and processes the incoming data accordingly. There are other embodiments as well.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: July 16, 2019
    Assignee: INPHI CORPORATION
    Inventors: Arun Tiruvur, Sudeep Bhoja
  • Patent number: 10333622
    Abstract: The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using PAM format(s) over optical communication networks. A feedback mechanism is provided for adjusting the transmission power levels. There are other embodiments as well.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: June 25, 2019
    Assignee: Inphi Corporation
    Inventors: Sudeep Bhoja, Chao Xu, Hari Shankar
  • Patent number: 10326550
    Abstract: The present invention is directed to data communication systems and techniques thereof. More specifically, embodiments of the present invention provide an FEC encoder that generates parity symbols that are embedded into FEC blocks. An FEC decoder determines whether to perform error correction based on the parity symbols. When performing error correction, the decoder selects a worst symbol from a segment of symbols, and the worst symbol is corrected. There are other embodiments as well.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: June 18, 2019
    Assignee: INPHI CORPORATION
    Inventors: Jamal Riani, Benjamin Smith, Volodymyr Shvydun, Sudeep Bhoja
  • Publication number: 20190165806
    Abstract: Embodiments relate to the emulation of the effect of Forward Error Correction (FEC) codes, e.g., GF10 Reed Solomon (RS) FEC codes, on the bit error ratio (BER) of received Pseudo-Random Binary Sequences (PRBS) patterns. In particular, embodiments group errors into RS-FEC symbols and codewords in order to determine if the errors are correctable. By emulating the error correction capabilities of FEC codes in order to determine which errors are correctable by the code, embodiments afford a more accurate representation of the post-FEC BER of RS FEC codes from links carrying PRBS patterns. This FEC code emulation provides error correction statistics, for stand-alone use or for error correction in connection with Bit Error Rate Testers (BERTs).
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Inventors: Andre SZCZEPANEK, Arash FARHOODFAR, Sudeep BHOJA, Sean BATTY, Shaun LYTOLLIS
  • Publication number: 20190158189
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Benjamin P. SMITH, Jamal RIANI, Sudeep BHOJA, Arash FARHOODFAR, Vipul BHATT
  • Patent number: 10236907
    Abstract: Embodiments relate to the emulation of the effect of Forward Error Correction (FEC) codes, e.g., GF10 Reed Solomon (RS) FEC codes, on the bit error ratio (BER) of received Pseudo-Random Binary Sequences (PRBS) patterns. In particular, embodiments group errors into RS-FEC symbols and codewords in order to determine if the errors are correctable. By emulating the error correction capabilities of FEC codes in order to determine which errors are correctable by the code, embodiments afford a more accurate representation of the post-FEC BER of RS FEC codes from links carrying PRBS patterns. This FEC code emulation provides error correction statistics, for stand-alone use or for error correction in connection with Bit Error Rate Testers (BERTs).
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: March 19, 2019
    Assignee: INPHI CORPORATION
    Inventors: Andre Szczepanek, Arash Farhoodfar, Sudeep Bhoja, Sean Batty, Shaun Lytollis
  • Patent number: 10236994
    Abstract: A circuit and method for mitigating multi-path interference in direct detection optical systems is provided. Samples of an optical signal having a pulse amplitude modulated (PAM) E-field are processed by generating a PAM level for each sample. For each sample, the sample is subtracted from the respective PAM level to generate a corresponding error sample. The error samples are lowpass filtered to produce estimates of multi-path interference (MPI). For each sample, one of the estimates of MPI is combined with the sample to produce an interference-mitigated sample.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: March 19, 2019
    Assignee: INPHI CORPORATION
    Inventors: Benjamin P. Smith, Jamal Riani, Sudeep Bhoja, Arash Farhoodfar, Vipul Bhatt
  • Publication number: 20190068322
    Abstract: The present invention relates to data communication systems and methods thereof. More specifically, embodiments of the present invention provide a data transmission method. Data are encoded with staircase encoder, and staircase coded blocks are first interleaved then combined into outer code frames. Code frames additionally include sync words and padding bits. A second interleaving is applied to the bits of the code frames, and Hamming encoding is performed on the output of the second interleaver. Hamming codewords are Gray-mapped to dual-polarized quadrature-amplitude-modulation (DP-QAM) symbols, and a third interleaving of the symbols from a set of successive Hamming codewords is performed. Pilot symbols are inserted periodically into the stream of DP-QAM symbols. There are other embodiments as well.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Benjamin SMITH, Jamal RIANI, Arash FARHOODFAR, Sudeep BHOJA
  • Publication number: 20190052364
    Abstract: The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using nDSQ format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices, such as spine switches and leaf switches, within a spine-leaf network architecture, which allows large amount of data to be shared among servers.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Jamal RIANI, Sudeep BHOJA
  • Publication number: 20180343151
    Abstract: Embodiments of the present invention include an apparatus that receives date from multiple lanes, which are then aligned and synchronized for transcoding and encoding.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 29, 2018
    Inventors: Arun TIRUVUR, Jamal RIANI, Sudeep BHOJA
  • Patent number: 10135535
    Abstract: The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using nDSQ format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices, such as spine switches and leaf switches, within a spine-leaf network architecture, which allows large amount of data to be shared among servers.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 20, 2018
    Assignee: INPHI CORPORATION
    Inventors: Jamal Riani, Sudeep Bhoja
  • Publication number: 20180262209
    Abstract: Embodiments relate to the emulation of the effect of Forward Error Correction (FEC) codes, e.g., GF10 Reed Solomon (RS) FEC codes, on the bit error ratio (BER) of received Pseudo-Random Binary Sequences (PRBS) patterns. In particular, embodiments group errors into RS-FEC symbols and codewords in order to determine if the errors are correctable. By emulating the error correction capabilities of FEC codes in order to determine which errors are correctable by the code, embodiments afford a more accurate representation of the post-FEC BER of RS FEC codes from links carrying PRBS patterns. This FEC code emulation provides error correction statistics, for stand-alone use or for error correction in connection with Bit Error Rate Testers (BERTs).
    Type: Application
    Filed: May 16, 2018
    Publication date: September 13, 2018
    Inventors: Andre SZCZEPANEK, Arash FARHOODFAR, Sudeep BHOJA, Sean BATTY, Shaun LYTOLLIS