Patents by Inventor Sudha Krishnakumar

Sudha Krishnakumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230015537
    Abstract: Example methods and systems are directed to reducing latency in providing trusted execution environments (TEEs). Initializing a TEE includes multiple steps before the TEE starts executing. Besides workload-specific initialization, workload-independent initialization is performed, such as adding memory to the TEE. In function-as-a-service (FaaS) environments, a large portion of the TEE is workload-independent, and thus can be performed prior to receiving the workload. Certain steps performed during TEE initialization are identical for certain classes of workloads. Thus, the common parts of the TEE initialization sequence may be performed before the TEE is requested. When a TEE is requested for a workload in the class and the parts to specialize the TEE for its particular purpose are known, the final steps to initialize the TEE are performed.
    Type: Application
    Filed: September 22, 2022
    Publication date: January 19, 2023
    Inventors: Anjo Lucas Vahldiek-Oberwagner, Ravi L. Sahita, Mona Vij, Rameshkumar Illikkal, Michael Steiner, Thomas Knauth, Dmitrii Kuvaiskii, Sudha Krishnakumar, Krystof C. Zmudzinski, Vincent Scarlata, Francis McKeen
  • Publication number: 20210110070
    Abstract: Example methods and systems are directed to reducing latency in providing trusted execution environments (TEES). Initializing a TEE includes multiple steps before the TEE starts executing. Besides workload-specific initialization, workload-independent initialization is performed, such as adding memory to the TEE. In function-as-a-service (FaaS) environments, a large portion of the TEE is workload-independent, and thus can be performed prior to receiving the workload. Certain steps performed during TEE initialization are identical for certain classes of workloads. Thus, the common parts of the TEE initialization sequence may be performed before the TEE is requested. When a TEE is requested for a workload in the class and the parts to specialize the TEE for its particular purpose are known, the final steps to initialize the TEE are performed.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Anjo Lucas Vahldiek-Oberwagner, Ravi L. Sahita, Mona Vij, Rameshkumar Illikkal, Michael Steiner, Thomas Knauth, Dmitrii Kuvaiskii, Sudha Krishnakumar, Krystof C. Zmudzinski, Vincent Scarlata, Francis McKeen
  • Patent number: 10691404
    Abstract: Technologies for cryptographic protection of I/O audio data include a computing device with a cryptographic engine and an audio controller. A trusted software component may request an untrusted audio driver to establish an audio session with the audio controller that is associated with an audio codec. The trusted software component may verify that a stream identifier associated with the audio session received from the audio driver matches a stream identifier received from the codec. The trusted software may program the cryptographic engine with a DMA channel identifier associated with the codec, and the audio controller may assert the channel identifier in each DMA transaction associated with the audio session. The cryptographic engine cryptographically protects audio data associated with the audio session. The audio controller may lock the controller topology after establishing the audio session, to prevent re-routing of audio during a trusted audio session. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: June 23, 2020
    Assignee: Intel Corporation
    Inventors: Sudha Krishnakumar, Reshma Lal, Pradeep M. Pappachan, Kar Leong Wong, Steven B. McGowan, Adeel A. Aslam
  • Publication number: 20190205087
    Abstract: Technologies for cryptographic protection of I/O audio data include a computing device with a cryptographic engine and an audio controller. A trusted software component may request an untrusted audio driver to establish an audio session with the audio controller that is associated with an audio codec. The trusted software component may verify that a stream identifier associated with the audio session received from the audio driver matches a stream identifier received from the codec. The trusted software may program the cryptographic engine with a DMA channel identifier associated with the codec, and the audio controller may assert the channel identifier in each DMA transaction associated with the audio session. The cryptographic engine cryptographically protects audio data associated with the audio session. The audio controller may lock the controller topology after establishing the audio session, to prevent re-routing of audio during a trusted audio session. Other embodiments are described and claimed.
    Type: Application
    Filed: March 1, 2019
    Publication date: July 4, 2019
    Inventors: Sudha Krishnakumar, Reshma Lal, Pradeep M. Pappachan, Kar Leong Wong, Steven B. McGowan, Adeel A. Aslam
  • Patent number: 10261748
    Abstract: Technologies for cryptographic protection of I/O audio data include a computing device with a cryptographic engine and an audio controller. A trusted software component may request an untrusted audio driver to establish an audio session with the audio controller that is associated with an audio codec. The trusted software component may verify that a stream identifier associated with the audio session received from the audio driver matches a stream identifier received from the codec. The trusted software may program the cryptographic engine with a DMA channel identifier associated with the codec, and the audio controller may assert the channel identifier in each DMA transaction associated with the audio session. The cryptographic engine cryptographically protects audio data associated with the audio session. The audio controller may lock the controller topology after establishing the audio session, to prevent re-routing of audio during a trusted audio session. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: April 16, 2019
    Assignee: Intel Corporation
    Inventors: Sudha Krishnakumar, Reshma Lal, Pradeep M. Pappachan, Kar Leong Wong, Steven B. McGowan, Adeel A. Aslam
  • Publication number: 20170177293
    Abstract: Technologies for cryptographic protection of I/O audio data include a computing device with a cryptographic engine and an audio controller. A trusted software component may request an untrusted audio driver to establish an audio session with the audio controller that is associated with an audio codec. The trusted software component may verify that a stream identifier associated with the audio session received from the audio driver matches a stream identifier received from the codec. The trusted software may program the cryptographic engine with a DMA channel identifier associated with the codec, and the audio controller may assert the channel identifier in each DMA transaction associated with the audio session. The cryptographic engine cryptographically protects audio data associated with the audio session. The audio controller may lock the controller topology after establishing the audio session, to prevent re-routing of audio during a trusted audio session. Other embodiments are described and claimed.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Sudha Krishnakumar, Reshma Lal, Pradeep M. Pappachan, Kar Leong Wong, Steven B. McGowan, Adeel A. Aslam