Patents by Inventor Sudhakar Gopalakrishnan

Sudhakar Gopalakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11860016
    Abstract: A mass flow controller assembly includes a housing defining a cavity, a plurality of internal passages, a first inlet, a first outlet, a second inlet, and a second outlet. A valve is connected to the housing, has an inlet fluidly coupled to the second outlet of the housing and an outlet fluidly coupled to the second inlet of the housing. The valve is configured to control fluid flow from the second outlet of the housing to the second inlet of the housing. A microelectromechanical (MEMS) Coriolis flow sensor is arranged in the cavity, includes an inlet fluidly coupled by at least one of the plurality of internal passages to the first inlet of the housing and is configured to measure at least one of a mass flow rate and density of fluid flowing through the MEMS Coriolis flow sensor. An outlet of the MEMS Coriolis flow sensor is fluidly coupled by at least one of the plurality of internal passages to the second outlet of the housing.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: January 2, 2024
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Dennis Smith, Peter Reimer, Sudhakar Gopalakrishnan
  • Patent number: 10591934
    Abstract: Methods and apparatuses for delivering a process gas to a processing chamber are provided. A mass flow controller includes a first flow line for introducing a process fluid and an inlet valve disposed along the first flow line for controlling a flow rate of the process fluid. The mass flow controller includes a second flow line for introducing a carrier fluid into the mass flow controller and a micro-electro-mechanical system (MEMS) Coriolis sensor for providing a density signal and a mass flow rate signal for a mixture of the process fluid and the carrier fluid. The mass flow controller provided includes an outlet valve for controlling a mass flow rate of the mixture that is output by the mass flow controller as well as a controller for operating the inlet valve based on the density signal and for operating the outlet valve based on the mass flow rate signal.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 17, 2020
    Assignee: Lam Research Corporation
    Inventors: Sudhakar Gopalakrishnan, Peter Reimer, John Haruff, Dennis Smith
  • Publication number: 20190279888
    Abstract: Methods and apparatuses for delivering a process gas to a processing chamber are provided. A mass flow controller includes a first flow line for introducing a process fluid and an inlet valve disposed along the first flow line for controlling a flow rate of the process fluid. The mass flow controller includes a second flow line for introducing a carrier fluid into the mass flow controller and a micro-electro-mechanical system (MEMS) Coriolis sensor for providing a density signal and a mass flow rate signal for a mixture of the process fluid and the carrier fluid. The mass flow controller provided includes an outlet valve for controlling a mass flow rate of the mixture that is output by the mass flow controller as well as a controller for operating the inlet valve based on the density signal and for operating the outlet valve based on the mass flow rate signal.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 12, 2019
    Inventors: Sudhakar Gopalakrishnan, Peter Reimer, John Haruff, Dennis Smith
  • Publication number: 20180235110
    Abstract: A cooling apparatus is provided. At least one power electronic component is provided. A fluid tight enclosure surrounds the at least one power electronic component. An inert dielectric fluid at least partially fills the fluid tight container and is in contact with the at least one power electronic component.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 16, 2018
    Inventors: Sudhakar GOPALAKRISHNAN, Peter REIMER, John HARUFF, John DAUGHERTY
  • Patent number: 7746634
    Abstract: The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: June 29, 2010
    Assignee: Cooligy Inc.
    Inventors: James Hom, Hae-won Choi, Tien Chih (Eric) Lin, Douglas E. Werner, Norman Chow, Adrian Correa, Brandon Leong, Sudhakar Gopalakrishnan, Richard Grant Brewer, Mark McMaster, Girish Upadhya
  • Publication number: 20090046423
    Abstract: The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 19, 2009
    Inventors: James Hom, Hae-won Choi, Tien Chih (Eric) Lin, Douglas E. Werner, Norman Chow, Adrian Correa, Brandon Leong, Sudhakar Gopalakrishnan, Richard Grant Brewer, Mark McMaster, Girish Upadhya
  • Patent number: 7090554
    Abstract: A flat-panel display is fabricated by a process in which a spacer (24) having a rough face (54 or 56) is positioned between a pair of plate structure (20 and 22). When electrons strike the spacer, the roughness in the spacer's face causes the number of secondary electrons that escape the spacer to be reduced, thereby alleviating positive charge buildup on the spacer. As a result, the image produced by the display is improved. The spacer facial roughness can be achieved in various ways such as providing suitable depressions (60, 62, 64, 66, 70, 74, or 80) or/and protuberances (82, 84, 88, and 92) along the spacer's face.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: August 15, 2006
    Assignees: Candescent Technologies Corporation, Candescent Intellectual Property Services, Inc., Advanced Technology Materials, Inc.
    Inventors: Roger W. Barton, Kollengode S. Narayanan, Bob L. Mackey, John M. Macaulay, George B. Hopple, Donald R. Schropp, Jr., Michael J. Nystrom, Sudhakar Gopalakrishnan, Shiyou Pei, Xueping Xu
  • Patent number: 6791255
    Abstract: A spacer structure for a display is disclosed that has a CTE which matches or very closely approximates the CTE of a high quality, desirable glass from which other display structures such as faceplates can be fabricated. The spacer structure is composed of a material that has a CTE that is tailorable within a range that closely matches the CTE range spanned by a variety of readily available high quality, desirable glass from which other display structures such as faceplates can be fabricated. The spacer structure disclosed has a CTE that achieves the foregoing qualities and retains all other properties characterizing requirements for use in displays. Further, the spacer structure disclosed has a CTE that enables great flexibility in the selection of other display components, without having to revamp existing fabrication techniques. Further still, a spacer structure is disclosed that minimizes zero current shift.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: September 14, 2004
    Assignees: Candescent Intellectual Property Services, Inc., Candescent Technologies Corporation
    Inventors: Timothy A. Derouin, Sudhakar Gopalakrishnan
  • Patent number: 6617772
    Abstract: A flat-panel display contains a pair of plate structure (20 and 22) separated by a spacer (24) having a rough face (54 or 56). When electrons strike the spacer, the roughness in the spacer's face causes the number of secondary electrons that escape the spacer to be reduced, thereby alleviating positive charge buildup on the spacer. As a result, the image produced by the display is improved. The spacer facial roughness can be achieved in various ways such as depressions (60, 62, 64, 66, 70, 74, or 80) or/and protuberances (82, 84, 88, and 92). Various techniques are presented for manufacturing the display, including the rough-faced spacer.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: September 9, 2003
    Assignees: Candescent Technologies Corporation, Candescent Intellectual Property Services, Inc., Advanced Technology Materials, Inc
    Inventors: Roger W. Barton, Kollengode S. Narayanan, Bob L. Mackey, John M. Macaulay, George B. Hopple, Donald R. Schropp, Jr., Michael J. Nystrom, Sudhakar Gopalakrishnan, Shiyou Pei, Xueping Xu
  • Patent number: 5270293
    Abstract: A process for preparing a superconducting, ceramic material with an increased critical current is described. In this process, the materials used to form the superconducting material are mixed with at least one inorganic salt, and the mixture containing the salt is then heat treated. The salt is then leached from the heat-treated mixture.
    Type: Grant
    Filed: April 12, 1991
    Date of Patent: December 14, 1993
    Assignee: Alfred University
    Inventors: Walter A. Schulze, Sudhakar Gopalakrishnan