Patents by Inventor Sudheer Sridharamurthy

Sudheer Sridharamurthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10322926
    Abstract: A structure for a MEMS device includes a MEMS layer comprising a mass portion and a spring portion, a substrate coupled to the MEMS layer, wherein the substrate comprises a planar region and an stopper region, wherein the MEMS device and the substrate are oriented in a plurality of relative orientations in response to an external force, wherein the spring portion and the stopper region are configured to disengagingly impact when the external force exceeds a first threshold force, wherein the mass portion and the planar region are configured to disengagingly impact when the external force exceeds a second threshold force, and wherein the second threshold force exceeds the first threshold force.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: June 18, 2019
    Assignee: mCube, Inc.
    Inventors: Sudheer Sridharamurthy, Te-Hsi Terrence Lee, Wenhua Zhang
  • Patent number: 10132630
    Abstract: A multi-axis integrated MEMS inertial sensor device. The device can include an integrated 3-axis gyroscope and 3-axis accelerometer on a single chip, creating a 6-axis inertial sensor device. The structure is spatially configured with efficient use of the design area of the chip by adding the accelerometer device to the center of the gyroscope device. The design architecture can be a rectangular or square shape in geometry, which makes use of the whole chip area and maximizes the sensor size in a defined area. The MEMS is centered in the package, which is beneficial to the sensor's temperature performance. Furthermore, the electrical bonding pads of the integrated multi-axis inertial sensor device can be configured in the four corners of the rectangular chip layout. This configuration guarantees design symmetry and efficient use of the chip area.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: November 20, 2018
    Assignee: mCube Inc.
    Inventors: Terrence Lee, Wenhua Zhang, Sudheer Sridharamurthy, Shingo Yoneoka
  • Patent number: 10036635
    Abstract: A MEMS rate sensor device. In an embodiment, the sensor device includes a MEMS rate sensor configured overlying a CMOS substrate. The MEMS rate sensor can include a driver set, with four driver elements, and a sensor set, with six sensing elements, configured for 3-axis rotational sensing. This sensor architecture allows low damping in driving masses and high damping in sensing masses, which is ideal for a MEMS rate sensor design. Low driver damping is beneficial to MEMS rate power consumption and performance, with low driving electrical potential to achieve high oscillation amplitude.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: July 31, 2018
    Assignee: mCube Inc.
    Inventors: Wenhua Zhang, Sudheer Sridharamurthy, Shingo Yoneoka, Terrence Lee
  • Patent number: 9377487
    Abstract: An improved MEMS transducer apparatus and method is provided. The apparatus has a movable base structure including an outer surface region and at least one portion removed to form at least one inner surface region. At least one intermediate anchor structure is disposed within the inner surface region. The apparatus includes an intermediate spring structure operably coupled to the central anchor structure, and at least one portion of the inner surface region. A capacitor element is disposed within the inner surface region.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: June 28, 2016
    Assignee: mCube Inc.
    Inventors: Daniel N. Koury, Jr., Sudheer Sridharamurthy
  • Patent number: 9075079
    Abstract: An integrated MEMS inertial sensor device. The device includes a MEMS inertial sensor overlying a CMOS substrate. The MEMS inertial sensor includes a drive frame coupled to the surface region via at least one drive spring, a sense mass coupled to the drive frame via at least a sense spring, and a sense electrode disposed underlying the sense mass. The device also includes at least one pair of quadrature cancellation electrodes disposed within a vicinity of the sense electrode, wherein each pair includes an N-electrode and a P-electrode.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: July 7, 2015
    Assignee: MCUBE INC.
    Inventors: Shingo Yoneoka, Sudheer Sridharamurthy, Wenhua Zhang, Te-Hsi Terrence Lee
  • Publication number: 20140361348
    Abstract: An integrated MEMS inertial sensor device. The device includes a MEMS inertial sensor overlying a CMOS substrate. The MEMS inertial sensor includes a drive frame coupled to the surface region via at least one drive spring, a sense mass coupled to the drive frame via at least a sense spring, and a sense electrode disposed underlying the sense mass. The device also includes at least one pair of quadrature cancellation electrodes disposed within a vicinity of the sense electrode, wherein each pair includes an N-electrode and a P-electrode.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 11, 2014
    Inventors: SHINGO YONEOKA, Sudheer Sridharamurthy, Wenhua Zhang, Te-Hsi Terrence Yoneoka
  • Patent number: 8869616
    Abstract: A method and structure for fabricating an inertial sensing device using tilt conversion to sense a force in the out-of-plane direction. The method can include forming anchor structure(s) coupled to portions of a surface region of a substrate member. Also, the method can include forming flexible anchor members coupled to portions of the anchor structures and frame structures, which can be formed overlying the substrate. The method can also include forming flexible frame members coupled to portions of the frame structures and movable structures, which can also be formed overlying the substrate. Forming the movable structures can include forming peripheral and central movable structures, which can be coupled to flexible structure members. Peripheral movable structures having flexible tilting members can convert a pure tilting out-of-plane motion to a pure translational out-of-plane motion. The forming of these elements can include performing an etching process on a single silicon material.
    Type: Grant
    Filed: June 18, 2011
    Date of Patent: October 28, 2014
    Assignee: mCube Inc.
    Inventors: Sudheer Sridharamurthy, Xiao “Charles” Yang
  • Publication number: 20140311247
    Abstract: A MEMS rate sensor device. In an embodiment, the sensor device includes a MEMS rate sensor configured overlying a CMOS substrate. The MEMS rate sensor can include a driver set, with four driver elements, and a sensor set, with six sensing elements, configured for 3-axis rotational sensing. This sensor architecture allows low damping in driving masses and high damping in sensing masses, which is ideal for a MEMS rate sensor design. Low driver damping is beneficial to MEMS rate power consumption and performance, with low driving electrical potential to achieve high oscillation amplitude.
    Type: Application
    Filed: January 24, 2014
    Publication date: October 23, 2014
    Applicant: mCube Inc.
    Inventors: WENHUA ZHANG, Sudheer Sridharamurthy, Shingo Yoneoka, Terrence Lee
  • Publication number: 20140311242
    Abstract: A multi-axis integrated MEMS inertial sensor device. The device can include an integrated 3-axis gyroscope and 3-axis accelerometer on a single chip, creating a 6-axis inertial sensor device. The structure is spatially with efficient use of the design area of the chip by adding the accelerometer device to the center of the gyroscope device. The design architecture can be a rectangular or square shape in geometry, which makes use of the whole chip area and maximizes the sensor size in a defined area. The MEMS is centered in the package, which is beneficial to the sensor's temperature performance. Furthermore, the electrical bonding pads of the integrated multi-axis inertial sensor device can be configured in the four corners of the rectangular chip layout. This configuration guarantees design symmetry and efficient use of the chip area.
    Type: Application
    Filed: January 23, 2014
    Publication date: October 23, 2014
    Applicant: mCube Inc.
    Inventors: TERRENCE LEE, WENHUA ZHANG, SUDHEER SRIDHARAMURTHY, SHINGO YONEOKA
  • Patent number: 8477473
    Abstract: An improved MEMS transducer apparatus and method is provided. The apparatus has a movable base structure including an outer surface region and at least one portion removed to form at least one inner surface region. At least one intermediate anchor structure is disposed within the inner surface region. The apparatus includes an intermediate spring structure operably coupled to the central anchor structure, and at least one portion of the inner surface region. A capacitor element is disposed within the inner surface region.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: July 2, 2013
    Assignee: Mcube Inc.
    Inventors: Daniel N. Koury, Jr., Sudheer Sridharamurthy