Patents by Inventor Sudhir M. Mulik

Sudhir M. Mulik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230174771
    Abstract: The present invention provides modified urea formaldehyde (UF) resin binder compositions and mineral fiber mats having an emulsion polymer modifier comprising, in copolymerized form, from 5 to 25 wt. % of co polymerized carboxylic acid functional monomers. The emulsion polymers have a measured glass transition temperature (DSC) ranging from ?40° C. to 70° C. and a large average particle size. Further, the emulsion polymers comprise less than 30% of the copolymerized acid in neutralized form and do not excessively thicken aqueous compositions containing them. The modified UF resin binder compositions enable good dilution stability in use and high tensile strength in products containing them.
    Type: Application
    Filed: July 23, 2021
    Publication date: June 8, 2023
    Inventors: Sudhir M. Mulik, William C. Finch, C. Damien Rodowski
  • Patent number: 10899666
    Abstract: The present invention provides efficient methods to form a high solids content polymeric polyacid or a comb polymer useful as a superplasticizer or dispersant which comprise heating to from 80 to 100 C. for a first time period, and then, sequentially, heating to a second temperature of from 150 to 250° C. for a second time period a wet reaction mixture having a solids content of from 80 to 99 wt. % and comprising from 15 to 60 wt. % of one or more ethylenically unsaturated acid or a salt thereof, from 37 to 76.99 wt. % of one or more polyether polyols, alkyl polyether polyols, polyether amines or alkyl polyether amines in the presence of (i) from 0.01 to 1 wt. %, of one or more water soluble radical initiators or redox pairs and (ii) from 2 to 22 wt. % of one or more phosphorus oxide containing compounds, all weights based on the total weight of the wet reaction mixture.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: January 26, 2021
    Assignee: Rohm and Haas Company
    Inventors: William C. Finch, Mike McGinnis, Sudhir M. Mulik, Charles J. Rand
  • Patent number: 10399055
    Abstract: Methods of manufacturing nano-engineered carbon materials, such as carbon aerogels and carbon xerogels, and methods of manufacturing precursor solutions and sol-gels for making the same are provided. A method for manufacturing a precursor solution comprises programmed-addition of a cross-linking agent to a component mixture comprising a resorcinol compound. A method for manufacturing a sol-gel comprises subjecting a precursor solutions to at least one heat treatment. Methods for producing nano-engineered carbon materials from precursor solutions and sol-gels are also provided. Methods for using the nano-engineered carbon materials are also disclosed. The resulting nano-engineered carbon materials can be useful in a range of products including, supercapacitor applications, high-surface-area electrodes, fuel cells, and desalination systems.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: September 3, 2019
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Sudhir M. Mulik, Joseph F. Ludvik, Robert W. Fleming, Christopher M. Lee
  • Publication number: 20190152851
    Abstract: The present invention provides efficient methods to form a high solids content polymeric polyacid or a comb polymer useful as a superplasticizer or dispersant which comprise heating to from 80 to 100 C for a first time period, and then, sequentially, heating to a second temperature of from 150 to 250° C. for a second time period a wet reaction mixture having a solids content of from 80 to 99 wt. % and comprising from 15 to 60 wt. % of one or more ethylenically unsaturated acid or a salt thereof, from 37 to 76.99 wt. % of one or more polyether polyols, alkyl polyether polyols, polyether amines or alkyl polyether amines in the presence of (i) from 0.01 to 1 wt. %, of one or more water soluble radical initiators or redox pairs and (ii) from 2 to 22 wt. % of one or more phosphorus oxide containing compounds, all weights based on the total weight of the wet reaction mixture.
    Type: Application
    Filed: November 18, 2016
    Publication date: May 23, 2019
    Inventors: William C. Finch, Mike McGinnis, Sudhir M. Mulik, Charles J. Rand
  • Publication number: 20180327310
    Abstract: The present invention provides two-component compositions for making a waterproofing membrane comprising as component A) one or more acrylic aqueous emulsion copolymerization product (copolymer) of (i) from 60 to 89.9 wt. % of one or more nonionic (meth)acrylic monomers, preferably, butyl acrylate, methyl acrylate or ethylhexyl (meth)acrylate, (ii) from 10 to 40 wt. % of one or more vinyl aromatic monomers, (iii) from 0.1 to 2.0 wt. % of one or more amide functional acrylic monomer, and mixtures thereof with itaconic acid or methacrylic acid, wherein the emulsion copolymer has at least one residue of an ascorbic acid reducing agent and of t-butyl hydroperoxide and has less than 40 ppm or, preferably, less than 20 ppm, or more preferably, less than 10 ppm, of residual (meth)acrylamide.
    Type: Application
    Filed: October 24, 2016
    Publication date: November 15, 2018
    Inventors: Ann E. Evans, William C. Finch, Miroslav Janco, Sudhir M. Mulik, Margarita Perello, Marc Schmitz
  • Publication number: 20180236424
    Abstract: Methods of manufacturing nano-engineered carbon materials, such as carbon aerogels and carbon xerogels, and methods of manufacturing precursor solutions and sol-gels for making the same are provided. A method for manufacturing a precursor solution comprises programmed-addition of a cross-linking agent to a component mixture comprising a resorcinol compound. A method for manufacturing a sol-gel comprises subjecting a precursor solutions to at least one heat treatment. Methods for producing nano-engineered carbon materials from precursor solutions and sol-gels are also provided. Methods for using the nano-engineered carbon materials are also disclosed. The resulting nano-engineered carbon materials can be useful in a range of products including, supercapacitor applications, high-surface-area electrodes, fuel cells, and desalination systems.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Applicant: Georgia-Pacific Chemicals LLC
    Inventors: Sudhir M. Mulik, Joseph F. Ludvik, Robert W. Fleming, Christopher M. Lee
  • Patent number: 9968900
    Abstract: Methods of manufacturing nano-engineered carbon materials, such as carbon aerogels and carbon xerogels, and methods of manufacturing precursor solutions and sol-gels for making the same are provided. A method for manufacturing a precursor solution comprises programmed-addition of a cross-linking agent to a component mixture comprising a resorcinol compound. A method for manufacturing a sol-gel comprises subjecting a precursor solutions to at least one heat treatment. Methods for producing nano-engineered carbon materials from precursor solutions and sol-gels are also provided. Methods for using the nano-engineered carbon materials are also disclosed. The resulting nano-engineered carbon materials can be useful in a range of products including, supercapacitor applications, high-surface-area electrodes, fuel cells, and desalination systems.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: May 15, 2018
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Sudhir M. Mulik, Joseph F. Ludvik, Robert W. Fleming, Christopher M. Lee
  • Patent number: 9962731
    Abstract: The present invention provides methacrylic acid polymer modified aqueous urea formaldehyde resin (UF resin) binder compositions useful in making a treated glass mat, e.g. for roofing shingles, wherein the methacrylic acid polymer comprises the reaction product of at least 50 wt. %, based on the total weight of monomers used to make the methacrylic acid polymer, of methacrylic acid or its salts, or mixtures thereof, a water-soluble phosphorous or sulfur containing compound and the remainder of a carboxylic acid group containing monomer, such as acrylic acid. The methacrylic acid polymers have at least one of a phosphite group, hypophosphite group, phosphinate group, diphosphinate group, and/or sulfonate group and enable modified UF resins to have early strength development even when the binder compositions comprise from 0.1 to less than 5 wt. % of the polymer modifier, based on total solids of the UF resin and the polymer modifier.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: May 8, 2018
    Assignee: Rohm and Haas Company
    Inventors: William C. Finch, Michael D. Kelly, Sudhir M. Mulik, C. Damien Rodowski
  • Patent number: 9574079
    Abstract: The present invention provides substantially formaldehyde free aqueous thermosetting binder resins from resorcinol and cycloaliphatic dialdehydes, glutaraldehyde or their mixtures and urea which may be excluded or included up to amounts which deter hot wet tensile strength in the cured binder. The compositions provide binders that on a performance cost basis are equivalent to phenol formaldehyde resins but without the formaldehyde.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: February 21, 2017
    Assignees: Rohm and Haas Company, Dow Global Technologies LLC
    Inventors: William C. Finch, Sudhir M. Mulik, Manesh Nadupparambil Sekharan
  • Patent number: 9175121
    Abstract: The present invention provides aqueous compositions comprising ?-hydroxy propyl gamma-polyoxyalkylene ether functional resins chosen from (poly)oxyalkylene ether ?-hydroxy propyl (meth)acrylates, maleates and itaconates, water soluble copolymers thereof, and mixtures thereof. The water soluble copolymers are comb polymers and (meth)acrylate, maleate and itaconate monomer resins can be addition polymerized to form comb polymers suitable for many uses, such as superplasticizers, dispersants, detergents and floor care compositions. In addition, the present invention provides methods of making the resins by reacting in water or aqueous solvent one or more reactant a) a glycidyl polyether or glycidyl ether, optionally having an alkyl or aryl end group with one or more reactant b) a carboxylate anion containing vinyl compound or polymer, preferably a polymer such as poly(meth)acrylic acid. The methods enable simple formation of comb polymers.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: November 3, 2015
    Assignee: Rolm and Haas Company
    Inventors: William C. Finch, Sudhir M. Mulik, C. Damien Rodowski, Barry Weinstein
  • Publication number: 20150238917
    Abstract: Methods of manufacturing nano-engineered carbon materials, such as carbon aerogels and carbon xerogels, and methods of manufacturing precursor solutions and sol-gels for making the same are provided. A method for manufacturing a precursor solution comprises programmed-addition of a cross-linking agent to a component mixture comprising a resorcinol compound. A method for manufacturing a sol-gel comprises subjecting a precursor solutions to at least one heat treatment. Methods for producing nano-engineered carbon materials from precursor solutions and sol-gels are also provided. Methods for using the nano-engineered carbon materials are also disclosed. The resulting nano-engineered carbon materials can be useful in a range of products including, supercapacitor applications, high-surface-area electrodes, fuel cells, and desalination systems.
    Type: Application
    Filed: April 6, 2015
    Publication date: August 27, 2015
    Applicant: Georgia-Pacific Chemicals LLC
    Inventors: Sudhir M. Mulik, Joseph F. Ludvik, Robert W. Fleming, Christopher M. Lee
  • Publication number: 20150148484
    Abstract: The present invention provides substantially formaldehyde free aqueous thermosetting binder resins from resorcinol and cycloaliphatic dialdehydes, glutaraldehyde or their mixtures and urea which may be excluded or included up to amounts which deter hot wet tensile strength in the cured binder. The compositions provide binders that on a performance cost basis are equivalent to phenol formaldehyde resins but without the formaldehyde.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: William C. Finch, Sudhir M. Mulik, Manesh Nadupparambil Sekharan
  • Patent number: 8999202
    Abstract: Methods of manufacturing nano-engineered carbon materials, such as carbon aerogels and carbon xerogels, and methods of manufacturing precursor solutions and sol-gels for making the same are provided. A method for manufacturing a precursor solution comprises programmed-addition of a cross-linking agent to a component mixture comprising a resorcinol compound. A method for manufacturing a sol-gel comprises subjecting a precursor solutions to at least one heat treatment. Methods for producing nano-engineered carbon materials from precursor solutions and sol-gels are also provided. Methods for using the nano-engineered carbon materials are also disclosed. The resulting nano-engineered carbon materials can be useful in a range of products including, supercapacitor applications, high-surface-area electrodes, fuel cells, and desalination systems.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 7, 2015
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Sudhir M. Mulik, Joseph F. Ludvik, Robert W. Fleming, Christopher M. Lee
  • Publication number: 20150093952
    Abstract: The present invention provides methacrylic acid polymer modified aqueous urea formaldehyde resin (UF resin) binder compositions useful in making a treated glass mat, e.g. for roofing shingles, wherein the methacrylic acid polymer comprises the reaction product of at least 50 wt. %, based on the total weight of monomers used to make the methacrylic acid polymer, of methacrylic acid or its salts, or mixtures thereof, a water-soluble phosphorous or sulfur containing compound and the remainder of a carboxylic acid group containing monomer, such as acrylic acid. The methacrylic acid polymers have at least one of a phosphite group, hypophosphite group, phosphinate group, diphosphinate group, and/or sulfonate group and enable modified UF resins to have early strength development even when the binder compositions comprise from 0.1 to less than 5 wt. % of the polymer modifier, based on total solids of the UF resin and the polymer modifier.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Inventors: William C. Finch, Michael D. Kelly, Sudhir M. Mulik, C. Damien Rodowski
  • Patent number: 8859686
    Abstract: The present invention provides compositions of phosphorus acid group and methacrylic anhydride group containing telomeric copolymers of methacrylic acid having an as yet never achieved amount of more than 70 wt. %, or, preferably, 72 wt. % or more, and up to 99 wt. %, of methacrylic anhydride groups based on the total weight of polymerized methacrylic acid and/or salt units. The compositions enjoy higher thermal stability than was previously achieved and enable easer processing that does not require the removal of liquids or solvents.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 14, 2014
    Assignees: Rohm and Haas Company, Dow Global Technologies, LLC
    Inventors: Charles J. Rand, Sudhir M. Mulik, Thomas Oswald, C. D. Rodowski, Barry Weinstein
  • Publication number: 20140303317
    Abstract: The present invention provides aqueous compositions comprising ?-hydroxy propyl gamma-polyoxyalkylene ether functional resins chosen from (poly)oxyalkylene ether ?-hydroxy propyl (meth)acrylates, maleates and itaconates, water soluble copolymers thereof, and mixtures thereof. The water soluble copolymers are comb polymers and (meth)acrylate, maleate and itaconate monomer resins can be addition polymerized to form comb polymers suitable for many uses, such as superplasticizers, dispersants, detergents and floor care compositions. In addition, the present invention provides methods of making the resins by reacting in water or aqueous solvent one or more reactant a) a glycidyl polyether or glycidyl ether, optionally having an alkyl or aryl end group with one or more reactant b) a carboxylate anion containing vinyl compound or polymer, preferably a polymer such as poly(meth)acrylic acid. The methods enable simple formation of comb polymers.
    Type: Application
    Filed: October 25, 2012
    Publication date: October 9, 2014
    Applicant: ROHM AND HAAS COMPANY
    Inventors: William C. Finch, Sudhir M. Mulik, C. Damien Rodowski, Barry Weinstein
  • Publication number: 20140275386
    Abstract: The present invention provides compositions of phosphorus acid group and methacrylic anhydride group containing telomeric copolymers of methacrylic acid having an as yet never achieved amount of more than 70 wt. %, or, preferably, 72 wt. % or more, and up to 99 wt. %, of methacrylic anhydride groups based on the total weight of polymerized methacrylic acid and/or salt units. The compositions enjoy higher thermal stability than was previously achieved and enable easer processing that does not require the removal of liquids or solvents.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicants: DOW GLOBAL TECHNOLOGIES LLC, ROHM AND HAAS COMPANY
    Inventors: Charles J. Rand, Sudhir M. Mulik, Thomas Oswald, C. D. Rodowski, Barry Weinstein
  • Publication number: 20110303880
    Abstract: Methods of manufacturing nano-engineered carbon materials, such as carbon aerogels and carbon xerogels, and methods of manufacturing precursor solutions and sol-gels for making the same are provided. A method for manufacturing a precursor solution comprises programmed-addition of a cross-linking agent to a component mixture comprising a resorcinol compound. A method for manufacturing a sol-gel comprises subjecting a precursor solutions to at least one heat treatment. Methods for producing nano-engineered carbon materials from precursor solutions and sol-gels are also provided. Methods for using the nano-engineered carbon materials are also disclosed. The resulting nano-engineered carbon materials can be useful in a range of products including, supercapacitor applications, high-surface-area electrodes, fuel cells, and desalination systems.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 15, 2011
    Applicant: GEORGIA-PACIFIC CHEMICALS LLC
    Inventors: Sudhir M. Mulik, Joseph F. Ludvik, Robert W. Fleming, Christopher M. Lee