Patents by Inventor Sudhir Mulik

Sudhir Mulik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141125
    Abstract: Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
    Type: Application
    Filed: May 18, 2023
    Publication date: May 2, 2024
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Sudhir Mulik
  • Publication number: 20230086996
    Abstract: Binder compositions and processes for making and using same. In some embodiments, the binder composition can include a urea-based compound, a bifunctional quaternary ammonium salt, and an aldehyde-based resin. In some embodiments, a resinated substrate can include a plurality of substrates and the binder composition. In some embodiments, a process for making a composite product can include contacting a plurality of substrates with the binder composition. The process can also include heating the resinated substrate to at least partially cure the aldehyde-based resin to produce the composite product. In some embodiments, a composite product can include the plurality of substrates and the aldehyde-based resin at least partially cured. In some embodiments, the plurality of substrates can include lignocellulosic substrates. In other embodiments, the plurality of substrates can include glass fibers.
    Type: Application
    Filed: January 20, 2021
    Publication date: March 23, 2023
    Applicant: Georgia-Pacific Chemicals LLC
    Inventors: Sudhir Mulik, Robert Breyer, Cornel Hagiopol, Robert Miller
  • Publication number: 20220298321
    Abstract: Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
    Type: Application
    Filed: November 1, 2021
    Publication date: September 22, 2022
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Sudhir Mulik
  • Patent number: 11192994
    Abstract: Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: December 7, 2021
    Assignee: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Sudhir Mulik
  • Publication number: 20200071482
    Abstract: Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
    Type: Application
    Filed: April 4, 2019
    Publication date: March 5, 2020
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Sudhir Mulik
  • Patent number: 10301445
    Abstract: Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: May 28, 2019
    Assignee: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Sudhir Mulik
  • Publication number: 20120152846
    Abstract: Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 21, 2012
    Applicant: Aerogel Technologies, LLC.
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Sudhir Mulik
  • Publication number: 20100247897
    Abstract: A bidentate free radical crosslinking initiator binds chemically to silica and silica rich surfaces and enables the free radical based polymerization of various materials such as styrene, divinylbenzene and methylmethacrylate onto silica and silica rich surfaces. When used in connection with aerogels, the resultant crosslinked aerogels exhibit greatly increased strength with only nominal increase in density.
    Type: Application
    Filed: September 5, 2008
    Publication date: September 30, 2010
    Inventors: Nicholas Leventis, Sudhir Mulik, Chariklia Sotiriou-Leventis
  • Publication number: 20100204355
    Abstract: Macroporous monolithic silica aerogels having mesoporous walls are produced via an acid-catalyzed sol-gel process from tetramethoxysilane (TMOS) using a triblock co-polymer (Pluronic P123) as a structure-directing agent and 1,3,5-trimethylbenzene (TMB) as a micelle-swelling reagent. Pluronic P 123 was removed by solvent extraction, and monoliths were obtained by removing the pore-filling solvent with liquid CO2, which was removed under supercritical conditions. The resulting materials are more robust compared to base-catalyzed silica aerogels of similar density. Mechanical properties can be further improved by reacting a di-isocyanate with the silanol groups on the macro and mesoporous surfaces. The polymer forms a conformal coat on the macropores and blocks access to the mesopores of templated samples, so that BET surface areas decrease dramatically.
    Type: Application
    Filed: September 5, 2008
    Publication date: August 12, 2010
    Inventors: Nicholas Leventis, Sudhir Mulik, Xiaojiang Wang, Chariklia Sotiriou-Leventis